, Volume 12, Issue 3, pp 655–661 | Cite as

Extraordinary Transmission Characteristics of Subwavelength Nanoholes with Rectangular Lattice

  • Arif E. Cetin
  • Martin Dršata
  • Yasa Ekşioğlu
  • Jiří PetráčekEmail author


We investigate the extraordinary optical transmission (EOT) properties of nanohole arrays with a rectangular lattice for label-free refractive index sensing applications. We show that the deviation within the periodicities along the two axes at the nanohole plane leads to more advantageous spectral quality of EOT signal compared to the conventional square lattice geometries. We introduce a way to further improve the sensitivity of the aperture system by carefully choosing the periodicities. We introduce nanohole arrays with a rectangular lattice supporting EOT signals with larger figure-of-merit values as well as enabling much stronger light transmission. We also model a nanohole system covered with a thin dielectric layer, mimicking biomolecules captured on the gold surface, in order to show its biosensing capability. We also show that certain deviation amounts between periodicities create spectral splitting within the EOT signal leading to larger spectral shifts in the presence of a thin dielectric film.


Plasmonics Nanoholes Extraordinary optical transmission Rectangular lattice Label-free biosensing 



J. Petráček acknowledges the support of the Ministry of Education, Youth, and Sports of the Czech Republic (project LD14008).


  1. 1.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  2. 2.
    Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782CrossRefGoogle Scholar
  3. 3.
    Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90–S96CrossRefGoogle Scholar
  4. 4.
    Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefPubMedGoogle Scholar
  5. 5.
    Brolo G, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefPubMedGoogle Scholar
  6. 6.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108:11784–11789CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang TY, Huang M, Yanik AA, Tsai HY, Shi P, Aksu S, Yanik MF, Altug H (2011) Large-scale plasmonic microarrays for label-free high-throughput screening. Lab Chip 11:3596–3602CrossRefPubMedGoogle Scholar
  8. 8.
    Valsecchi C, Brolo AG (2013) Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 29:5638–5649CrossRefPubMedGoogle Scholar
  9. 9.
    Monteiro JP, Carneiro LB, Rahman MM, Brolo AG, Santos MJL, Ferreira J, Girotto EM (2013) Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sens Actuator B-Chem 178:366–370CrossRefGoogle Scholar
  10. 10.
    Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3:1–10CrossRefGoogle Scholar
  11. 11.
    Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A (2014) Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 4:1–7Google Scholar
  12. 12.
    Cetin AE, Etezadi D, Galarreta BC, Busson MP, Eksioglu Y, Altug H (2015) Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. ACS Photon 2:1167–1174CrossRefGoogle Scholar
  13. 13.
    Osawa M, Ikeda M (1991) Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. J Phys Chem 95:9914–9919CrossRefGoogle Scholar
  14. 14.
    Knepp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Field MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRefGoogle Scholar
  15. 15.
    Aksu S, Cetin AE, Adato R, Altug H (2013) Plasmonically enhanced vibrational biospectroscopy using low-cost infrared antenna arrays by nanostencil lithography. Adv Opt Mater 1:798–803CrossRefGoogle Scholar
  16. 16.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefPubMedGoogle Scholar
  17. 17.
    Artar A, Yanik AA, Altug H (2009) Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95:051105CrossRefGoogle Scholar
  18. 18.
    Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6:9989–9995CrossRefPubMedGoogle Scholar
  19. 19.
    Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh SH (2013) Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv Mater 25:2678–2685CrossRefPubMedGoogle Scholar
  20. 20.
    Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16:1743–48CrossRefGoogle Scholar
  21. 21.
    Couture M, Liang Y, Poirier Richard HP, Faid R, Peng W, Masson JF (2013) Tuning the 3D plasmon field of nanohole arrays. Nanoscale 5:12399–12408CrossRefPubMedGoogle Scholar
  22. 22.
    Ekşioğlu Y, Cetin AE, Petráček J (2016) Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices. Plasmonics 11:851–856Google Scholar
  23. 23.
    Blanchard-Dionne AP, Guyot L, Patskovsky S, Gordon R, Meunier M (2011) Intensity based surface plasmon resonance sensor using a nanohole rectangular array. Opt Express 19:15041–15046CrossRefPubMedGoogle Scholar
  24. 24.
    Yanik AA, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10:4962–4969CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hanes WM (2015) CRC handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Faculty of Mechanical Engineering, Institute of Physical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Department of Electrical and Electronics EngineeringIstanbul Kemerburgaz UniversityIstanbulTurkey
  4. 4.CEITEC - Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations