Skip to main content
Log in

Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR) sensor based on D-shaped photonic crystal fiber (PCF) coated with indium tin oxide (ITO) film is proposed and numerically investigated. Thanks to the adjustable complex refractive index of ITO, the sensor can be operated in the near-infrared (NIR) region. The wavelength sensitivity, amplitude sensitivity, and phase sensitivity are investigated with different fiber structure parameters. Simulation results show that ∼6000 nm/refractive index unit (RIU), ∼148/RIU, and ∼1.2 × 106 deg/RIU/cm sensitivity can be achieved for wavelength interrogation, amplitude interrogation, and phase interrogation, respectively, when the environment refractive index varies between 1.30 and 1.31. It is noted that the wavelength sensitivity and phase sensitivity are more pronounced with larger refractive index. The proposed SPR sensor can be used in various applications, including medicine, environment, and large-scale targets detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  PubMed  Google Scholar 

  2. Kretchmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung A 23:2135–2136

    Google Scholar 

  3. Popov EK, Bonod N, Enoch S (2007) Comparison of plasmon surface waves on shallow and deep metallic 1D and 2D gratings. Opt Express 15:4224–4237

    Article  PubMed  Google Scholar 

  4. Tan Z, Hao X, Shao Y, Chen Y, Li X, Fan P (2014) Phase modulation and structure effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt Express 22:15049–15063

    Article  PubMed  Google Scholar 

  5. Chen Y, Yu Y, Li X, Tan Z, Geng Y (2015) Experimental comparison of fiber-optic surface plasmon resonance sensors with multi metal layers and single silver or gold layer. Plasmoncis 10:1801–1808

    Article  CAS  Google Scholar 

  6. Moayyed H, Leite IT, Coelho L, Santos JL, Viegas D (2015) Theoretical study of phase-interrogated surface plasmon resonance based on fiber sensors with metallic and oxide layers. Plasmonics 10:979–987

    Article  CAS  Google Scholar 

  7. An G, Li S, Qin W, Zhang W, Fan Z, Bao Y (2014) High-sensitive refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film. Plasmonics 9:1355–1360

    Article  CAS  Google Scholar 

  8. Luan N, Wang R, Lv W, Yao J (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23:8576–8682

    Article  CAS  PubMed  Google Scholar 

  9. Kim SA, Kim SJ, Moon H, Jun SB (2012) In vivo optical neural recording using fiber-based surface plasmon resonance. Opt Lett 37:614–616

    Article  CAS  PubMed  Google Scholar 

  10. Mishra SK, Tripathi SN, Choudary V, Gupta BD (2015) Surface plasmon resonance-based fiber optic methane gas sensor utilizing grapheme-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite. Plasmonics 10:1147–1157

    Article  CAS  Google Scholar 

  11. Caucheur C, Voisin, Albert J (2015) Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity. Opt Express 23:2918–2932

    Article  Google Scholar 

  12. Geddes CD (2010) Reviews in plasmonics. Springer, New York

    Google Scholar 

  13. Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109–116

    Article  CAS  PubMed  Google Scholar 

  14. Allsop T, Neal R, Mou C, Brown P, Saied S, Reham S, Kalli K, Webb DJ, Wullivan J, Mapps D, Bennion I (2009) Exploitation of multilayer coating for infrared surface plasmon resonance fiber sensors. Appl Opt 48:276–286

    Article  CAS  PubMed  Google Scholar 

  15. Hottin J, Wijaya E, Hay L, Maricot S, Bouazaoui M, Vilcot JP (2013) Comparison of gold and silver/gold bimetallic surface for highly sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8:619–624

    Article  CAS  Google Scholar 

  16. Feng D, Liu G, Li Q, Cui J, Zheng J, Ye Z (2013) Design of infrared SPR sensor based on bimetallic nanowire gratings on plastic optical fiber surface. IEEE Sensors J 13:255–259

    Google Scholar 

  17. Buckley R, Berini P (2007) Figure of merit for 2D surface plasmon waveguides and applications to metal strips. Opt Express 15:12174–12182

    Article  CAS  PubMed  Google Scholar 

  18. Nemova G, Kashyap R (2006) Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Opt Lett 31:2118–2120

    Article  PubMed  Google Scholar 

  19. Marquez V, Albert J (2015) High resolution NIR TFBG-assisted biochemical sensors. IEEE J Lightwave Technol 33:3363–3373

    Article  Google Scholar 

  20. Boltasseva A, Atwater HA (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  PubMed  Google Scholar 

  21. Karsavin AV, Zayats AV (2012) Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator. Phys Rev Lett 109:053901

    Article  CAS  Google Scholar 

  22. Capretti A, Wang Y, Engheta N, Negro LD (2015) Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt Lett 40:1500–1503

    Article  CAS  PubMed  Google Scholar 

  23. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14:6463–6468

    Article  CAS  PubMed  Google Scholar 

  24. Dash JN, Jha R (2015) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photon Technol Lett 20:595–598

    Google Scholar 

  25. Fleming JW (1984) Dispersion in GeO2-SiO2 glasses. Appl Opt 23:4486–4493

    Article  CAS  PubMed  Google Scholar 

  26. Hautakorpi M, Mattinen M, Ludvigsen H (2008) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16:8427–8432

    Article  PubMed  Google Scholar 

  27. Hanssani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14:11616–11621

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T. Highly Sensitive SPR Sensor Based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide at Near-Infrared Wavelength. Plasmonics 12, 583–588 (2017). https://doi.org/10.1007/s11468-016-0301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0301-7

Keywords

Navigation