Skip to main content
Log in

Theoretical T Circuit Modeling of Graphene-Based Metamaterial Broadband Absorber

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate a broadband light absorber with its absorption being able to reach as high as 90 % and above ranging from the ultraviolet to the visible regimes. A theoretical model is given for the purpose of analyzing the physical mechanism of the absorption. By applying the equivalent T circuit model of metamaterial layers to the analysis of our designed absorber, our calculated results are in good agreement to that of the theoretical model and satisfy the perfect-absorption condition very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS et al. (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  PubMed  Google Scholar 

  2. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  PubMed  Google Scholar 

  4. Sun Z et al. (2010) Graphene mode-locked ultrafast laser. ACS Nano 4(2):803–810

    Article  CAS  PubMed  Google Scholar 

  5. Liu M et al. (2011) A graphene-based broadband optical modulator. Nature 474.7349:64–67

    Article  CAS  Google Scholar 

  6. Liu F et al. (2015) Enhanced graphene absorption and linewidth sharpening enabled by Fano-like geometric resonance at near-infrared wavelengths. Opt Express 23(16):21097–21106

    Article  CAS  PubMed  Google Scholar 

  7. Xia F et al. (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4(12):839–843

    Article  CAS  PubMed  Google Scholar 

  8. Nefedov IS, Valaginnopoulos CA, Melnikov LA (2013) Perfect absorption in graphene multilayers. J Opt 15(11):114003

    Article  CAS  Google Scholar 

  9. Vincenti MA et al. (2013) Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt Lett 38(18):3550–3553

    Article  CAS  PubMed  Google Scholar 

  10. Pirruccio G et al. (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6):4810–4817

    Article  CAS  PubMed  Google Scholar 

  11. Stauber T, Gómez-Santos G, Javier García de Abajo F (2014) Extraordinary absorption of decorated undoped graphene. Phys Rev Lett 112(7):077401

    Article  CAS  PubMed  Google Scholar 

  12. Landy NI et al. (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  PubMed  Google Scholar 

  13. Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  14. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24(23):OP98–O120

    CAS  PubMed  Google Scholar 

  15. Cui Y et al. (2014) Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev 8(4):495–520

    Article  CAS  Google Scholar 

  16. Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag 51(7):1516–1529

    Article  Google Scholar 

  17. Fernández Álvarez H, de Cos Gómez ME, Las-Heras F (2015) A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber. Materials 8(4):1666–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin C, Martínez LJ, Povinelli ML (2013) Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Opt Express 21(105):A872–A882

    Article  CAS  PubMed  Google Scholar 

  19. Shen X et al. (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19(10):9401–9407

    Article  CAS  PubMed  Google Scholar 

  20. Faniayeu, I. A., et al. (2014) A single-layer meta-atom absorber. IEEE 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)

  21. Ra’di Y, Simovski CR, Tretyakov SA (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys Rev Appl 3(3):037001

    Article  CAS  Google Scholar 

  22. Liu N et al. (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19(21):3628–3632

    Article  CAS  Google Scholar 

  23. Dai J et al. (2013) Light absorber based on nano-spheres on a substrate reflector. Opt Express 21(6):6697–6706

    Article  CAS  PubMed  Google Scholar 

  24. Peres NMR et al. (2013) Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. J Phys Condens Matter 25(12):125303

    Article  CAS  PubMed  Google Scholar 

  25. Dallenbach W, Kleinsteuber W (1938) Reflection and absorption of decimeter-waves by plane dielectric layers. Hochfreq u Elektroak 51:152–156

    Google Scholar 

  26. Serdyukov A et al. (2001) Electromagnetics of bi-anisotropic materials:{T} heory and applications. Gordon and Breach, Amsterdam

    Google Scholar 

  27. Fernandez A, Valenzuela A (1985) General solution for single-layer electromagnetic-wave absorber. Electron Lett 21(1):20–21

    Article  Google Scholar 

  28. Munk BA (2005) Frequency selective surfaces: theory and design. John Wiley & Sons, Hoboken

Download references

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (Grant No. U1532133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Fu, Y. Theoretical T Circuit Modeling of Graphene-Based Metamaterial Broadband Absorber. Plasmonics 12, 571–575 (2017). https://doi.org/10.1007/s11468-016-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0299-x

Keywords

Navigation