Skip to main content
Log in

Plasmonic Planar Lens Based on Slanted Nanoslit Array

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The novel plasmonic lenses based on slanted nanoslits have been proposed theoretically. The slanted nanoslits with different slant angles can provide unequal propagation distances for the surface plasmon polaritons excited by incident light. The phase retardation for wavefront shaping can be obtained to realize constructive interference on a preset single spot. We can actively modulate the position of the optical focus by adjusting the slits slant angles properly. The simulation results of the finite element method are used to verify our proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Berlin Heidelberg 111(1):1–133

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48

    Article  CAS  Google Scholar 

  4. Lopez-Tejeira F, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, Gonzalez MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3(5):324–328

    Article  CAS  Google Scholar 

  5. Xu T, Zhao Y, Gan D, Wang C, Du C, Luo X (2008) Directional excitation of surface plasmons with subwavelength slits. Appl Phys Lett 92(10):101501–101501–3

    Article  Google Scholar 

  6. Wang Y, Wang J, Gao S, Liu C (2013) Two-way directional plasmonic excitation with two unsymmetrical metallic slits. Appl Phys Express 6(2):263–270

    Article  CAS  Google Scholar 

  7. Xia X, Wang J, Liang X, Tang B, Song C, Qu S, Wang Y, Liu C (2015) A dual-way directional surface-plasmon-polaritons launcher based on asymmetric slanted nanoslits. J Mod Opt 62(5):358–363

    Article  Google Scholar 

  8. Kim S, Lim Y, Kim H, Park J, Lee B (2008) Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl Phys Lett 92(1):013103–013103–3

    Article  Google Scholar 

  9. Wang B, Wu X, Zhang Y (2013) Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays. Plasmonics 8(4):1535–1541

    Article  CAS  Google Scholar 

  10. Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan X, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130):331–334

    Article  CAS  Google Scholar 

  11. Wang X, Xia X, Wang J, Zhang F, Hu ZD, Liu C (2015) Tunable plasmonically-induced transparency with unsymmetrical graphene-rings resonators. J Appl Phys 118(1):013101

    Article  Google Scholar 

  12. Zhang J, Guo Z, Li R, Wang W, Zhang A, Liu J, Qu S, Gao J (2015) Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics 10(6):1255–1261

    Article  CAS  Google Scholar 

  13. Khorasaninejad M, Aieta F, Kanhaiya P, Kats MA, Genevet P, Rousso D, Capasso F (2015) Achromatic metasurface lens at telecommunication wavelengths. Nano Lett 15(8):5358–5362

    Article  CAS  Google Scholar 

  14. Maklizi MEI, Hendawy M, Swillam MA (2014) Super-focusing of visible and UV light using a meta surface. J Opt 16(10):105007

    Article  Google Scholar 

  15. Sun ZJ, Kim HK (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85(4):642–644

    Article  CAS  Google Scholar 

  16. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13(18):6815–6820

    Article  Google Scholar 

  17. Gao Y, Liu J, Guo K, Gao Y, Liu S (2014) A side-illuminated plasmonic planar lens. Opt Express 22(1):699–706

    Article  Google Scholar 

  18. Lieven V, Catrysse PB, Zongfu Y, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9(1):235–238

    Article  Google Scholar 

  19. Lin L, Goh XM, McGuinness LP, Roberts A (2010) Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel region focusing. Nano Lett 10(5):1936–1940

    Article  CAS  Google Scholar 

  20. Gao H, Hyun JK, Lee MH, Yang JC, Lincoln JL, Odom TW (2010) Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett 10(10):4111–4116

    Article  CAS  Google Scholar 

  21. Ishii S, Kildishev AV, Shalaev VM, Kuo-Ping C, Drachev VP (2011) Metal nanoslit lenses with polarization-selective design. Opt Lett 36(4):451–453

    Article  CAS  Google Scholar 

  22. Jiang X, Ye J, He J, Wang X, Hu D, Feng S, Kan Q, Zhang Y (2013) An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt Express 21(24):30030–30038

    Article  Google Scholar 

  23. Ni X, Ishii S, Alexander VK, Vladimir MS (2013) Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci Appl 2(4):e72–e77

    Article  Google Scholar 

  24. Hu D, Wang X, Feng S, Ye J, Sun W, Kan Q, Klar PJ, Zhang Y (2013) Ultrathin terahertz planar elements. Adv Opt Mater 1(2):186–191

    Article  Google Scholar 

  25. Pors A, Nielsen MG, Eriksen RL, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13(2):829–834

    Article  CAS  Google Scholar 

  26. Wang W, Guo Z, Zhou K, Sun Y, Shen F, Li Y, Qu S, Liu S (2015) Polarization-independent longitudinal multifocusing metalens. Opt Express 23(23):29855–29866

    Article  Google Scholar 

  27. De AF, Liberale C, Coluccio ML, Cojoc G, Di FE (2011) Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3(7):2689–2696

    Article  Google Scholar 

  28. De AF, Malerba M, Patrini M, Miele E, Das G, Toma A, Zaccaria RP, Di FE (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13(8):3553–3558

    Article  Google Scholar 

  29. Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal–insulator-metal waveguides. IEEE Photon Technol Lett 19(2):91–93

    Article  Google Scholar 

  30. Lin X, Huang X (2009) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11504139, 11504140), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20140167, BK20140128), the Fundamental Research Funds for the Central Universities (Grant Nos. JUSRP115A15, JUSRP51517), and the Nature Science Foundation of Xuzhou Institute of Technology (Grant No. XKY2014206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jicheng Wang or Tian Sang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Wang, J., Liu, D. et al. Plasmonic Planar Lens Based on Slanted Nanoslit Array. Plasmonics 12, 361–367 (2017). https://doi.org/10.1007/s11468-016-0272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0272-8

Keywords

Navigation