Skip to main content

Advertisement

Log in

Robustly Efficient Superfocusing of Immersion Plasmonic Lenses Based on Coupled Nanoslits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We report plasmonic lenses consisting of coupled nanoslits immersed in a high-index medium to obtain the robustly efficient superfocusing. Based on the geometrical optics and the wavefront reconstruction theory, an array of nanoslits perforated in a gold film and a series of spacings between adjacent nanoslits are optimally designed to realize the desired phase modulation for light focusing. The numerical results verify the design of each plasmonic lens in excellent agreement. For the given total phase difference of 2π, the immersion plasmonic lenses with smaller lens aperture can have much better focusing performance than the non-immersion one. A superfocusing spot of λ/4.39 is achieved using an oil immersion plasmonic lens with an aperture size of 4.97λ, resulting in a resolution improvement of 68.9 % compared with the non-immersion lens. Moreover, such superfocusing performance can be still well kept when the structural parameters of the lens, e.g., nanoslit width and metal film thickness, are deviated from the original design, making the final implementation of the superfocusing lenses much easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen J, Li Z, Zhang X, Xiao J, Gong Q (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451

    Google Scholar 

  2. Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  4. Lin L, Goh XM, McGuinness LP, Roberts A (2010) Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett 10:1936–1940

    Article  CAS  Google Scholar 

  5. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3:388–394

    Article  CAS  Google Scholar 

  6. Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7:403–408

    Article  CAS  Google Scholar 

  7. Fu Y, Zhou X (2010) Plasmonic lenses: a review. Plasmonics 5:287–310

    Article  CAS  Google Scholar 

  8. Hao F, Wang R, Wang J (2010) A novel design method of focusing-control device by modulating SPPs scattering. Plasmonics 5:45–49

    Article  Google Scholar 

  9. Cheng B, Chang K, Lan Y, Tsai D (2015) Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures. Sci Rep 5:7996

    Article  CAS  Google Scholar 

  10. Cheng B, Chen H, Chang K, Lan Y, Tsai D (2015) Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution. Sci Rep 5:18172

    Article  CAS  Google Scholar 

  11. Yu Y, Zappe H (2011) Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design. Opt Express 19:9434–9444

    Article  Google Scholar 

  12. Yu Y, Zappe H (2012) Theory and implementation of focal shift plasmonic of lenses. Opt Lett 37:1592–1594

    Article  Google Scholar 

  13. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13:6815–6820

    Article  Google Scholar 

  14. Ishii S, Kildishev AV, Shalaev VM, Chen K, Drachev VP (2011) Metal nanoslit lenses with polarization-selective design. Opt Lett 36:451–453

    Article  CAS  Google Scholar 

  15. Chen Q, Cumming DRS (2010) Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film. Opt Express 18:14788–14793

    Article  CAS  Google Scholar 

  16. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9:235–238

    Article  CAS  Google Scholar 

  17. Verslegers L, Catrysse PB, Yu Z, Fan S (2009) Planar metallic nanoscale slit lenses for angle compensation. Appl Phys Lett 95:071112

    Article  Google Scholar 

  18. Zhu Y, Yuan W, Yu Y, Diao J (2015) Metallic planar lens formed by coupled width-variable nanoslits for superfocusing. Opt Express 23:20124–20131

    Article  Google Scholar 

  19. Smith BW, Bourov A, Kang H, Cropanese F, Fan Y, Lafferty NV, Zavyalova LV (2004) Water immersion optical lithography at 193 nm. J Micro/Nanolith MEMS MOEMS 3(1):44–51

    Article  CAS  Google Scholar 

  20. Mansfield SM, Kino GS (1990) Solid immersion microscope. Appl Phys Lett 57:2615

    Article  CAS  Google Scholar 

  21. Karrai K, Lorenz X, Novotny L (2000) Enhanced reflectivity contrast in confocal solid immersion lens microscopy. Appl Phys Lett 77:3459

    Article  CAS  Google Scholar 

  22. Rogers ET, Lindberg J, Roy T, Savo S, Chad JE, Dennis MR, Zheludev NI (2012) A super-oscillatory lens optical microscope for subwavelength imaging. Nat Mater 11:432–435

    Article  CAS  Google Scholar 

  23. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  24. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci 97:8206–8210

    Article  CAS  Google Scholar 

  25. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 51375400), the Aeronautical Science Foundation of China (Grant No. 2013ZC53036), the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02020504), the Program for the New Star of Science and Technology of Shaanxi Province (Grant No. 2014KJXX-38), the Specific Project for the National Excellent Doctorial Dissertations (201430), and the Program for the New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiting Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yuan, W., Yu, Y. et al. Robustly Efficient Superfocusing of Immersion Plasmonic Lenses Based on Coupled Nanoslits. Plasmonics 11, 1543–1548 (2016). https://doi.org/10.1007/s11468-016-0208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0208-3

Keywords

Navigation