Skip to main content
Log in

Scattering of Surface Plasmon by Nano-probe. Influence of the Local Field Inhomogeneity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The surface plasmon polariton scattering by nanoparticle was considered in the frame of approach based on the effective susceptibility concept. The main feature of the approach is taking into account the inhomogeneity of the local field at the nanoparticle. The inhomogeneity strongly influences on the effective susceptibility of the particle formation. The approach allowed to explain the nonmonotonic behavior of scattered field intensity at the detector placed in far zone on the distance between the particle and a surface obtained experimentally in reported earlier by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Skelton SE, Sergides M, Patel R, Karczewska E, Marago OM, Jones PH (2012) Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers. J Quant Spectrosc Radiat Transf 113:2512–2520

    Article  CAS  Google Scholar 

  2. Aslan MM, Mengüç MP, Videen G (2005) Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments. J Quant Spectrosc Radiat Transf 93:207–217

    Article  CAS  Google Scholar 

  3. Kurihara T, Sugimoto R, Kudo R, Takahashi S, Takamasu K (2012) Height measurement of single nanoparticles based on evanescent field modulation. Int J Nanomanuf 8:419–431

    Article  Google Scholar 

  4. Kihm KD, Banerjee A, Choi CK, Takagi T (2004) Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp Fluids 37:811–824

    Article  CAS  Google Scholar 

  5. Olson J, Dominiquez-Medina S, Hoggard A, Wang L-Y, Chang W-S, Link S (2015) Optical characterization of single plasmonic nanoparticles. Chem Soc Rev 44:40–57

    Article  CAS  Google Scholar 

  6. Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2010) Surface plasmon resonance for detection of dielectric nanoparticles and viruses. Plasmonics 5:31–35

    Article  CAS  Google Scholar 

  7. Lozovski V (2012) Visualization of nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863

    Article  CAS  Google Scholar 

  8. Patane S, Gussiardi PG, Labardi M, Allegrini M (2004) Apertureless near-field optical microscopy. Rivista del Nuovo Cimento 27:1–46

    CAS  Google Scholar 

  9. Novotny L (2007) Chapter 5. In: Wolf E (ed) The history of near-field optics, progress in optics 50. Elsevier, Amsterdam, pp 137–184

    Google Scholar 

  10. Wu S-F (2006) Review of near-field optical microscopy. Frontiers of Physics in China 1:263–274

    Article  Google Scholar 

  11. Konopsky VN, Kouyanov KE, Novikova NN (2001) Investigations of the interference of surface plasmons on rough silver surface by scanning plasmon near-field microscope. Ultramicroscopy 88:127–138

    Article  CAS  Google Scholar 

  12. Keller O (1996) Local fields in the electrodynamics of mesoscopic media. Phys Rep 268:85–262

    Article  CAS  Google Scholar 

  13. Lozovski V (2010) The effective susceptibility concept in the electrodynamics of nano-systems. J Comput Theor Nanosci 7:859–863

    Article  Google Scholar 

  14. Konopsky VN (2000) Operation of scanning plasmon near-field microscope with gold and silver tips in tapping mode: demonstration of subtip resolution. Opt Commun 185:83–96

    Article  CAS  Google Scholar 

  15. Andre P, Charra F, Pileni MP (2002) Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate. Journal of Applied Physics 91:3028–3036

    Article  CAS  Google Scholar 

  16. Greffet J-J, Carminati R (1997) Image formation in near-field optics. Prog Surf Sci 56:133–237

    Article  CAS  Google Scholar 

  17. Bozhevolnyi SI, Lozovski VZ (2002) Second-harmonic scanning optical microscopy of individual nanostructures. Phys Rev B 65:235420-1-235420-10

    Article  Google Scholar 

  18. Lozovski V, Yu N, Bozhevolnyi SI (2001) Near-feld imaging of pyramid-like nanoparticles at a surface. Physica E 11:323–331

    Article  Google Scholar 

  19. Evlyukhin AB, Bozhevolnyi SI (2005) Point-dipole approximation for surface plasmon polariton scattering: implications and limitations. Phys Rev B 71:134304

    Article  Google Scholar 

  20. Evlyukhin AB, Bozhevolnyi SI (2005) Surface plasmon polariton scattering by small ellipsoid particles. Surf Sci 590:173–180

    Article  CAS  Google Scholar 

  21. Søndergaard T, Bozhevolnyi SI (2004) Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study. Phys Rev B 69:045422

    Article  Google Scholar 

  22. Yaghjian AD (1980) Electric dyadic Green’s functions in the source region. Proc IEEE 68:248–263

    Article  Google Scholar 

  23. Søndergaard T, Bozhevolnyi SI (2003) Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interaction. Phys Rev B 67:165405

    Article  Google Scholar 

  24. Evlyukhin AB, Bozhevolnyi SI, Brucoli G, Martin-Moreno L, Garcia-Vidal FJ (2007) Surface plasmon polariton scattering by finite-size nanoparticles. Phys Rev B 76:075426

    Article  Google Scholar 

  25. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Khylko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khylko, O., Lozovski, V. & Motornyi, O. Scattering of Surface Plasmon by Nano-probe. Influence of the Local Field Inhomogeneity. Plasmonics 11, 1475–1480 (2016). https://doi.org/10.1007/s11468-016-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0199-0

Keywords

Navigation