Skip to main content
Log in

Optical and Nonlinear Optical Limiting Properties of AgNi Alloy Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver-nickel alloy nanoparticles with varying size were synthesized by reducing the metal precursors chemically using a single-step solution-based synthesis route. The structural, optical, and nonlinear optical properties of the prepared samples were investigated. The synthesized samples having highly agglomerated, interconnected nature and found to exhibit dipole and multipole surface plasmon resonance related optical absorption bands. Nonlinear optical and optical limiting properties were investigated using a single beam open aperture z-scan technique with the use of 532 nm, 5-ns laser pulses. The nonlinearity observed was found to have contributions from saturable absorption (SA) and excited state absorption (ESA) related to free carriers. The effective nonlinear optical absorption was enhanced in AgNi alloy compared to pure Ag nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  2. Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509

    Article  CAS  Google Scholar 

  3. Gu X, Xu L, Tian F, Ding Y (2009) Au-Ag alloy nanoporous nanotubes. Nano Res 2:386–393

    Article  CAS  Google Scholar 

  4. Santhi K, Thirumal E, Karthick SN, Kim H, Nidhin M, Narayanan V, Stephen A (2012) Synthesis, structure stability and magnetic properties of nanocrystalline Ag–Ni alloy. J Nanopart Res 14:868

    Article  Google Scholar 

  5. Kumar M, Deka S (2014) Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions. Appl Mater Interfaces 6:16071–16081

    Article  CAS  Google Scholar 

  6. Arana S, Arana N, Gracia FJ, Castano E (2005) High sensitivity linear position sensor developed using granular Ag–Co giant magnetoresistances. Sens Actuators A 123:116–121

    Article  Google Scholar 

  7. He R, Wang Y, Wang X, Wang Z, Liu G, Zhou W, Wen L, Li Q, Wang X, Chen X, Zeng J, Hou JG (2014) Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nat Commun 5:4327

    CAS  Google Scholar 

  8. Amendola V, Scaramuzza S, Agnoli S, Granozzi G, Meneghetti M, Campo G, Bonanni V, Pineider F, Sangregorio C, Ghigna P, Polizzi S, Riello P, Fiameni S, Nodari L (2015) Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res 8:4007–4023

    Article  CAS  Google Scholar 

  9. Portales H, Saviot L, Duval E, Gaudry M, Cottancin E, Pellarin M, Lerme J, Broyer M (2002) Resonant Raman scattering by quadrupolar vibrations of Ni-Ag core-shell nanoparticles. Phys Rev B 65:165422

    Article  Google Scholar 

  10. Shen XS, Wang GZ, Hong X, Zhu W (2009) Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates. Phys Chem Chem Phys 11:7450–7454

    Article  CAS  Google Scholar 

  11. Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Fang J, Lakowicz JR (2003) Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: potential applications of indocyanine green to in vivo imaging. J Phys Chem A 107:3443–3449

    Article  CAS  Google Scholar 

  12. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  13. Hiep VV, Chau N, Hong DM, Luong NH (2007) High coercivity and giant magnetoresistance of CoAg, CoCu granular films. J Magn Mater 310:2524–2526

    Article  CAS  Google Scholar 

  14. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 1. “Silver-Only” aqueous suspensions via hydrogen reduction. J Phys Chem B 108:13948–13956

    Article  CAS  Google Scholar 

  15. Tsujia M, Nishizawa Y, Matsumoto K, Miyamae N, Tsuji T, Zhang X (2007) Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone. Eng Aspects 293:185–194

    Article  Google Scholar 

  16. Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271

    Article  CAS  Google Scholar 

  17. Kreibig U, Volmer M (1995) Optical properties of metal clusters. Springer series in material science Vol. 25. Springer, Berlin

  18. Bhui DK, Bar H, Sarkar P, Sahoo GP, De SP, Misra A (2009) Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J Mol Liq 145:33–37

    Article  CAS  Google Scholar 

  19. Hache F, Ricard D, Flytzanis C (1998) The optical kerr effect in small metal particles and metal colloids: The case of gold. Appl Phys A 47:347–357

    Article  Google Scholar 

  20. Van Stryland EW, Sheik-Bahae M (1998) Characterization techniques and tabulations for organic nonlinear materials. Marcel Dekker, New York, pp 655–692

    Google Scholar 

  21. Udayabhaskar R, Ollakkan MS, Karthikeyan B (2014) Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires. Appl Phys Lett 104:013107

    Article  Google Scholar 

  22. Sandeep CSS, Samal AK, Pradeep T, Philip R (2010) Optical limiting properties of Te and Ag2Te nanowires. Chem Phys Lett 485:326–330

    Article  Google Scholar 

Download references

Acknowledgments

Author B. Karthikeyan and R. Udayabaskar would like to thank Prof. R. V. Mangalaraja, University of Concepcion, Concepcion, Chile. The author R. Udayabaskar wish to thank FONDECYT-CONICYT, Government of Chile (Nos. 3160142) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayabhaskar, R., Sreekanth, P. & Karthikeyan, B. Optical and Nonlinear Optical Limiting Properties of AgNi Alloy Nanostructures. Plasmonics 11, 1461–1466 (2016). https://doi.org/10.1007/s11468-016-0197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0197-2

Keywords

Navigation