, Volume 11, Issue 6, pp 1427–1435 | Cite as

Substrate-Independent Lattice Plasmon Modes for High-Performance On-Chip Plasmonic Sensors



We systematically study the lattice plasmon resonance structures, which are known as core/shell SiO2/Au nanocylinder arrays (NCAs), for high-performance, on-chip plasmonic sensors using the substrate-independent lattice plasmon modes (LPMs). Our finite-difference time-domain simulations reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the height-diameter aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the substrate-independent LPMs. Moreover, we show that the high wavelength sensitivity and the narrow linewidth of the substrate-independent LPMs lead to the plasmonic sensors with high figure of merit (FOM) and high signal-to-noise ratio (SNR). In addition, the plasmonic sensors are robust in asymmetric environments for a wide range of working wavelengths. Our further study of both far- and near-field electromagnetic distribution in the NCAs confirms the height-enabled tunability of the plasmonic “hot spots” at the sub-nanoparticle resolution and the large field enhancement in the substrate-independent LPMs, which are responsible for the high FOM and SNR of the plasmonic sensors.


Lattice plasmon modes Plasmonic sensors Spectral tunability Figure of merit Hot spots 



The authors acknowledge the financial support of the Beckman Young Investigator Program. We also thank the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: We thank B. Bangalore Rajeeva, X. Peng, M. Wang, and Z. Wu for their helpful discussions on the simulation results and proofreading the manuscript.


  1. 1.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961. doi: 10.1021/cr200061k CrossRefGoogle Scholar
  2. 2.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366. doi: 10.1063/1.1629280 CrossRefGoogle Scholar
  3. 3.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi: 10.1021/nl0515753 CrossRefGoogle Scholar
  4. 4.
    Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4(11):6639–6650. doi: 10.1021/nn101994t CrossRefGoogle Scholar
  5. 5.
    Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252. doi: 10.1103/PhysRevLett.80.4249 CrossRefGoogle Scholar
  6. 6.
    Lu D, Kan JJ, Fullerton EE, Liu Z (2014) Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nanotechnol 9(1):48–53. doi: 10.1038/nnano.2013.276 CrossRefGoogle Scholar
  7. 7.
    Gandra N, Portz C, Tian L, Tang R, Xu B, Achilefu S, Singamaneni S (2014) Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers. Angew Chem Int Ed 53(3):866–870. doi: 10.1002/anie.201308516 CrossRefGoogle Scholar
  8. 8.
    Tanaka K, Plum E, Ou JY, Uchino T, Zheludev NI (2010) Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys Rev Lett 105(22):227403. doi: 10.1103/PhysRevLett.105.227403 CrossRefGoogle Scholar
  9. 9.
    Dang X, Qi J, Klug MT, Chen P-Y, Yun DS, Fang NX, Hammond PT, Belcher AM (2013) Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett 13(2):637–642. doi: 10.1021/nl3043823 CrossRefGoogle Scholar
  10. 10.
    Mubeen S, Lee J, Lee W-r, Singh N, Stucky GD, Moskovits M (2014) On the plasmonic photovoltaic. ACS Nano 8(6):6066–6073. doi: 10.1021/nn501379r CrossRefGoogle Scholar
  11. 11.
    Neumann O, Feronti C, Neumann AD, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas NJ (2013) Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc Natl Acad Sci 110(29):11677–11681. doi: 10.1073/pnas.1310131110 CrossRefGoogle Scholar
  12. 12.
    Mukherjee S, Zhou L, Goodman AM, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas NJ (2014) Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J Am Chem Soc 136(1):64–67. doi: 10.1021/ja411017b CrossRefGoogle Scholar
  13. 13.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. doi: 10.1038/nmat2629 CrossRefGoogle Scholar
  14. 14.
    Pryce IM, Koleske DD, Fischer AJ, Atwater HA (2010) Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett 96 (15). doi: 10.1063/1.3377900
  15. 15.
    Roca M, Haes AJ (2008) Silica-void-gold nanoparticles: temporally stable surf ace-enhanced Raman scattering substrates. J Am Chem Soc 130(43):14273–14279. doi: 10.1021/ja8059039 CrossRefGoogle Scholar
  16. 16.
    Jiao Y, Ryckman JD, Koktysh DS, Weiss SM (2013) Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates. Opt Mater Express 3(8):1137–1148. doi: 10.1364/ome.3.001137 CrossRefGoogle Scholar
  17. 17.
    Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzán LM (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8(6):5833–5842. doi: 10.1021/nn500727w CrossRefGoogle Scholar
  18. 18.
    Zheng YB, Payton JL, Song T-B, Pathem BK, Zhao Y, Ma H, Yang Y, Jensen L, Jen AKY, Weiss PS (2012) Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: flat versus curved substrates. Nano Lett 12(10):5362–5368. doi: 10.1021/nl302750d CrossRefGoogle Scholar
  19. 19.
    Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8(6):6372–6381. doi: 10.1021/nn501871d CrossRefGoogle Scholar
  20. 20.
    Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44(10):936–946. doi: 10.1021/ar200023x CrossRefGoogle Scholar
  21. 21.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607 CrossRefGoogle Scholar
  22. 22.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453. doi: 10.1038/nmat2162 CrossRefGoogle Scholar
  23. 23.
    Tian L, Liu K-K, Morrissey JJ, Gandra N, Kharasch ED, Singamaneni S (2014) Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. J Mater Chem B 2(2):167–170. doi: 10.1039/c3tb21551b CrossRefGoogle Scholar
  24. 24.
    Zheng YB, Kiraly B, Weiss PS, Huang TJ (2012) Molecular plasmonics for biology and nanomedicine. Nanomedicine 7(5):751–770. doi: 10.2217/nnm.12.30 CrossRefGoogle Scholar
  25. 25.
    Aćimović SS, Kreuzer MP, González MU, Quidant R (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3(5):1231–1237. doi: 10.1021/nn900102j CrossRefGoogle Scholar
  26. 26.
    Enoch S, Quidant R, Badenes G (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12(15):3422–3427. doi: 10.1364/opex.12.003422 CrossRefGoogle Scholar
  27. 27.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857. doi: 10.1021/cr100313v CrossRefGoogle Scholar
  28. 28.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2(4):687–692. doi: 10.1021/nn7003734 CrossRefGoogle Scholar
  29. 29.
    Chen C-D, Cheng S-F, Chau L-K, Wang CRC (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22(6):926–932. doi: 10.1016/j.bios.2006.03.021 CrossRefGoogle Scholar
  30. 30.
    Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3(4):485–491. doi: 10.1021/nl0340475 CrossRefGoogle Scholar
  31. 31.
    Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10(10):3427–3430. doi: 10.1021/la00022a011 CrossRefGoogle Scholar
  32. 32.
    Evans PR, Wurtz GA, Atkinson R, Hendren W, O’Connor D, Dickson W, Pollard RJ, Zayats AV (2007) Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties. J Phys Chem C 111(34):12522–12527. doi: 10.1021/jp0718348 CrossRefGoogle Scholar
  33. 33.
    Cinel NA, Butun S, Ozbay E (2012) Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt Express 20(3):2587–2597. doi: 10.1364/oe.20.002587 CrossRefGoogle Scholar
  34. 34.
    Vazquez-Mena O, Sannomiya T, Villanueva LG, Voros J, Brugger J (2011) Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications. ACS Nano 5(2):844–853. doi: 10.1021/nn1019253 CrossRefGoogle Scholar
  35. 35.
    Wokaun A, Gordon J, Liao P (1982) Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 48(14):957–960. doi: 10.1103/PhysRevLett.48.957 CrossRefGoogle Scholar
  36. 36.
    Sonnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88(7):077402. doi: 10.1103/PhysRevLett.88.077402 CrossRefGoogle Scholar
  37. 37.
    Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland GV (2006) Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys Chem Chem Phys 8(30):3540–3546. doi: 10.1039/b604856k CrossRefGoogle Scholar
  38. 38.
    Kats MA, Yu N, Genevet P, Gaburro Z, Capasso F (2011) Effect of radiation damping on the spectral response of plasmonic components. Opt Express 19(22):21748–21753. doi: 10.1364/oe.19.021748 CrossRefGoogle Scholar
  39. 39.
    Dmitriev A, Hägglund C, Chen S, Fredriksson H, Pakizeh T, Käll M, Sutherland DS (2008) Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett 8(11):3893–3898. doi: 10.1021/nl8023142 CrossRefGoogle Scholar
  40. 40.
    Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688. doi: 10.1021/nl052409y CrossRefGoogle Scholar
  41. 41.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988. doi: 10.1021/nl802509r CrossRefGoogle Scholar
  42. 42.
    Zhan Y, Lei DY, Li X, Maier SA (2014) Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale 6(9):4705–4715. doi: 10.1039/c3nr06024a CrossRefGoogle Scholar
  43. 43.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298. doi: 10.1103/RevModPhys.82.2257 CrossRefGoogle Scholar
  44. 44.
    Meier M, Wokaun A, Liao PF (1985) Enhanced fields on rough surfaces-dipolar interactions among particles of sizes exceeding the Rayleigh limit. J Opt Soc Am B: Opt Phys 2(6):931–949. doi: 10.1364/JOSAB.2.000931 CrossRefGoogle Scholar
  45. 45.
    Markel VA (1993) Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure. J Mod Opt 40(11):2281–2291. doi: 10.1080/09500349314552291 CrossRefGoogle Scholar
  46. 46.
    Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84(20):4721–4724. doi: 10.1103/PhysRevLett.84.4721 CrossRefGoogle Scholar
  47. 47.
    Zhao LL, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107(30):7343–7350. doi: 10.1021/jp034235j CrossRefGoogle Scholar
  48. 48.
    Zou SL, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875. doi: 10.1063/1.1760740 CrossRefGoogle Scholar
  49. 49.
    Zou SL, Schatz GC (2004) Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J Chem Phys 121(24):12606–12612. doi: 10.1063/1.1826036 CrossRefGoogle Scholar
  50. 50.
    Auguie B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902. doi: 10.1103/PhysRevLett.101.143902 CrossRefGoogle Scholar
  51. 51.
    Chu Y, Schonbrun E, Yang T, Crozier KB (2008) Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl Phys Lett 93(18):181108. doi: 10.1063/1.3012365 CrossRefGoogle Scholar
  52. 52.
    Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403. doi: 10.1103/PhysRevLett.101.087403 CrossRefGoogle Scholar
  53. 53.
    Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17(4):2334–2340. doi: 10.1364/OE.17.002334 CrossRefGoogle Scholar
  54. 54.
    Zhou W, Odom TW (2011) Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat Nanotechnol 6(7):423–427. doi: 10.1038/nnano.2011.72 CrossRefGoogle Scholar
  55. 55.
    Nikitin AG, Nguyen T, Dallaporta H (2013) Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: experimental studies. Appl Phys Lett 102(22):221116. doi: 10.1063/1.4803535 CrossRefGoogle Scholar
  56. 56.
    Nikitin AG (2014) Diffraction-induced subradiant transverse-magnetic lattice plasmon modes in metal nanoparticle arrays. Appl Phys Lett 104(6):061107. doi: 10.1063/1.4864277 CrossRefGoogle Scholar
  57. 57.
    Vitrey A, Aigouy L, Prieto P, García-Martín JM, González MU (2014) Parallel collective resonances in arrays of gold nanorods. Nano Lett 14(4):2079–2085. doi: 10.1021/nl500238h CrossRefGoogle Scholar
  58. 58.
    Spackova B, Homola J (2013) Sensing properties of lattice resonances of 2D metal nanoparticle arrays: an analytical model. Opt Express 21(22):27490–27502. doi: 10.1364/oe.21.027490 CrossRefGoogle Scholar
  59. 59.
    Kuznetsov AI, Evlyukhin AB, Goncalves MR, Reinhardt C, Koroleva A, Arnedillo ML, Kiyan R, Marti O, Chichkov BN (2011) Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano 5(6):4843–4849. doi: 10.1021/nn2009112 CrossRefGoogle Scholar
  60. 60.
    Offermans P, Schaafsma MC, Rodriguez SRK, Zhang Y, Crego-Calama M, Brongersma SH, Rivas JG (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6):5151–5157. doi: 10.1021/nn201227b CrossRefGoogle Scholar
  61. 61.
    Du Y, Shi L, Hong M, Li H, Li D, Liu M (2013) A surface plasmon resonance biosensor based on gold nanoparticle array. Opt Commun 298:232–236. doi: 10.1016/j.optcom.2013.02.024 CrossRefGoogle Scholar
  62. 62.
    Auguie B, Bendana XM, Barnes WL, Garcia de Abajo FJ (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15):155447. doi: 10.1103/PhysRevB.82.155447 CrossRefGoogle Scholar
  63. 63.
    Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2(9):549–554. doi: 10.1038/nnano.2007.252 CrossRefGoogle Scholar
  64. 64.
    Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z-K, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381. doi: 10.1038/ncomms3381 Google Scholar
  65. 65.
    Lin L, Yi Y (2014) Lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays. Opt Lett 39(16):4823–4826. doi: 10.1364/ol.39.004823 CrossRefGoogle Scholar
  66. 66.
    Lin L, Yi Y (2015) Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays. Opt Express 23(1):130–142. doi: 10.1364/OE.23.000130 CrossRefGoogle Scholar
  67. 67.
    Westcott SL, Jackson JB, Radloff C, Halas NJ (2002) Relative contributions to the plasmon line shape of metal nanoshells. Phys Rev B 66(15):155431. doi: 10.1103/PhysRevB.66.155431 CrossRefGoogle Scholar
  68. 68.
    Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi: 10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  69. 69.
    Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZ-H, Spatz JP, Möller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77(19):2949–2951. doi: 10.1063/1.1323553 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Materials Science & Engineering Program, and Texas Materials InstituteThe University of Texas at AustinAustinUSA

Personalised recommendations