Skip to main content
Log in

Photothermal Behaviors of Flowing Media Caused by Localized Surface Plasmon Resonance of Au Nanorings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Based on the scanning of photothermal optical coherence tomography (PT-OCT), the photothermal behavior of a flowing medium generated by the enhanced absorption of localized surface plasmon resonance of incorporated Au nanorings (NRIs) is observed. In particular, the effects of air bubble generation and thermally induced bubble size oscillation in a flowing medium through the incorporation of Au NRIs and modulated laser illumination are demonstrated. The size oscillation of the air bubble produces the vibration of the flowing medium, which is synchronized with the laser modulation, for generating PT-OCT signal. At the resonance frequency of flowing-medium vibration, the PT-OCT signal reaches the maximum level. The resonance frequency is related to the mass density and viscosity of the flowing medium and is independent of the flow speed of the medium in a vessel. Such a relation can be used for in situ monitoring the mass density and viscosity of a flowing medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  2. Zagaynova EV, Shirmanova MV, Kirillin MY, Khlebtsov BN, Orlova AG, Balalaeva IV, Sirotkina MA, Bugrova ML, Agrba PD, Kamensky VA (2008) Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 53(18):4995–5009

    Article  CAS  Google Scholar 

  3. Kim CS, Wilder-Smith P, Ahn YC, Liaw LHL, Chen Z, Kwon YJ (2009) Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt 14(3):034008

    Article  Google Scholar 

  4. Kirillin M, Shirmanova M, Sirotkina M, Bugrova M, Khlebtsov B, Zagaynova E (2009) Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations. J Biomed Opt 14(2):021017

    Article  Google Scholar 

  5. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934

    Article  CAS  Google Scholar 

  6. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  CAS  Google Scholar 

  7. Adler DC, Huang SW, Huber R, Fujimoto JG (2008) Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography, Opt. Express 16(7):4376–4393

    Article  CAS  Google Scholar 

  8. Zhou C, Tsai TH, Adler DC, Lee HC, Cohen DW, Mondelblatt A, Wang Y, Connolly JL, Fujimoto JG (2010) Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells. Opt Lett 35(5):700–702

    Article  Google Scholar 

  9. Skala MC, Crow MJ, Wax A, Izatt JA (2008) Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett 8(10):3461–3467

    Article  CAS  Google Scholar 

  10. Cang H, Sun T, Li ZY, Chen J, Wiley BJ, Xia Y, Li X (2005) Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 30(22):3048–3050

    Article  CAS  Google Scholar 

  11. Pache C, Bocchio NL, Bouwens A, Villiger M, Berclaz C, Goulley J, Gibson MI, Santschi C, Lasser T (2012) Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in optical coherence microscopy. Opt Express 20(19):21385–21399

    Article  CAS  Google Scholar 

  12. Tucker-Schwartz JM, Meyer TA, Patil CA, Duvall CL, Skala MC (2012) In vivo photothermal optical coherence tomography of gold nanorod contrast agents. Biomed Opt Express 3(11):2881–2895

    Article  CAS  Google Scholar 

  13. Nahas A, Varna M, Fort E, Boccara AC (2014) Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection. Biomed Opt Express 5(10):3541–3546

    Article  CAS  Google Scholar 

  14. Tucker-Schwartz JM, Beavers KR, Sit WW, Shah AT, Duvall CL, Skala MC (2014) In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography. Biomed Opt Express 5(6):1731–1743

    Article  Google Scholar 

  15. Chi TT, Tu YC, Li MJ, Chu CK, Chang YW, Yu CK, Kiang YW, Yang CC (2014) Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring. Opt Express 22(10):11754–11769

    Article  Google Scholar 

  16. Yin B, Kuranov RV, McElroy AB, Kazmi S, Dunn AK, Duong TQ, Milner TE (2013) Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation. J Biomed Opt 18(5):056005

    Article  Google Scholar 

  17. Tseng HY, Lee CK, Wu SY, Chi TT, Yang KM, Wang JY, Kiang YW, Yang CC, Tsai MT, Wu YC, Chou HYE, Chiang CP (2010) Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography. Nanotechnology 21(29):295102

    Article  Google Scholar 

  18. Lee CK, Tseng HY, Lee CY, Wu SY, Chi TT, Yang KM, Chou HYE, Tsai MT, Wang JY, Kiang YW, Chiang CP, Yang CC (2010) Characterizing the localized surface plasmon resonance behaviors of Au nanorings and tracking their diffusion in bio-tissue with optical coherence tomography. Biomed Opt Express 1(4):1060–1074

    Article  CAS  Google Scholar 

  19. Tseng HY, Chen WF, Kiang YW, Yang CC (2013) On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application. Nanotechnology 24(6):065102

    Article  Google Scholar 

  20. Wu SY, Chang WM, Tseng HY, Lee CK, Chi TT, Wang JY, Kiang YW, Yang CC (2011) Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations. Plasmonics 6(3):547–555

    Article  CAS  Google Scholar 

  21. Chi TT, Lee CK, Wu CT, Yang CC, Tsai MT, Chiang CP (2011) Motion-insensitive optical coherence tomography based micro-angiography. Opt Express 19(27):26117–26131

    Article  CAS  Google Scholar 

  22. Rosencranz R, Bogen SA (2006) Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol 125(Suppl 1):S78–S86

    Google Scholar 

Download references

Acknowledgments

This research was supported by Ministry of Science and Technology (grants NSC 102-2218-E-002-012-MY3 and NSC 102-2221-E-002-199) and National Health Research Institute (grant NHRI-EX102-10043EI), Taiwan, The Republic of China. Also, it is sponsored by the Excellent Research Project (103R890951 and 103R890952) of National Taiwan University.

Compliance with Ethical Standards

The content of this paper does not have any potential conflict of interest with anyone. This research does not involve any human participant or animal. Also, all the authors have given their approvals to the submission of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, TT., Tu, YC., Yu, CK. et al. Photothermal Behaviors of Flowing Media Caused by Localized Surface Plasmon Resonance of Au Nanorings. Plasmonics 10, 1565–1572 (2015). https://doi.org/10.1007/s11468-015-9972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9972-8

Keywords

Navigation