Skip to main content
Log in

Theoretical Description of Dynamic Transmission Characteristics in MDM Waveguide Aperture-Side-Coupled with Ring Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We investigate the dynamic transmission characteristics in metal-dielectric-metal (MDM) waveguide aperture-side-coupled with ring cavity. Assuming the aperture as a resonator, a theoretical model was established to describe the formation and evolution mechanisms of the spectral responses in circular ring structure, and the theoretical results are in good agreement with the finite-difference time-domain (FDTD) simulations. In particular, combining Maxwell’s equations and field distributions, the analytical theory is also applicable to other aperture-side-coupled ring nanostructures, which highlights the utility of the theoretical description. The results may pave the way towards controlling light in highly integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  3. Li Q, Qiu M (2013) Plasmonic wave propagation in silver nanowires: guiding modes or not? Opt Express 21:8587–8595

    Article  CAS  Google Scholar 

  4. Wang W, Yang Q, Fan F, Xu H, Wang ZL (2011) Light propagation in curved silver nanowire plasmonic waveguides. Nano Lett 11:1603–1608

    Article  CAS  Google Scholar 

  5. Fang ZY, Zhu X (2013) Plasmonics in nanostructures. Adv Mater 25:3840–3856

    Article  CAS  Google Scholar 

  6. Pile DFP, Gramotnev DK (2005) Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt Lett 30:1186–1188

    Article  CAS  Google Scholar 

  7. Akjouj A, Leveque G, Szunerits S, Pennec Y, Djafari-Rouhani B, Boukherroub R, Dobrzynski L (2013) Nanometal plasmon polaritons. Surf Sci Rep 68:1–67

    Article  CAS  Google Scholar 

  8. Han ZH, Bozhevolnyi SI (2013) Radiation guiding with surface plasmon polaritons. Rep Prog Phys 76:016402

    Article  Google Scholar 

  9. Chen JJ, Li Z, Yue S, Xiao JH, Gong QH (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  CAS  Google Scholar 

  10. Zhang ZR, Zhang LW, Li HQ, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114

    Article  Google Scholar 

  11. Cai WS, Shin W, Fan SH, Brongersma ML (2010) Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater 22:5120–5124

    Article  CAS  Google Scholar 

  12. Chai Z, Hu XY, Zhu Y, Sun SB, Yang H, Gong QH (2014) Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity. Adv Optical Mater 2:320–325

    Article  CAS  Google Scholar 

  13. Cao GT, Li HJ, Zhan SP, Xu HQ, Liu ZM, He ZH, Wang Y (2013) Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Opt Express 21:9198–9205

    Article  Google Scholar 

  14. Zhang X, Li Z, Chen JJ, Yue S, Gong QH (2013) A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit. Opt Express 21:14548–14554

    Article  Google Scholar 

  15. Chheang V, Lee TK, Oh GY, Kim HS, Lee BH, Kim DG, Choi YW (2013) Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler. Opt Express 21:20880–20887

    Article  Google Scholar 

  16. Lee TW, Gray S (2005) Subwavelength light bending by metal slit structures. Opt Express 13:9652–9659

    Article  Google Scholar 

  17. Guo YN, Wang HN, Reed JM, Pan S, Zou SL (2013) Effective light bending and controlling in a chamber-channel waveguide system. Opt Lett 38:2209–2211

    Article  Google Scholar 

  18. Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface Plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13:10795–10800

    Article  Google Scholar 

  19. Rotenberg N, Beggs DM, Sipe JE, Kuipers L (2013) Resonant coupling from a new angle: coherent control through geometry. Opt Express 21:16504–16513

    Article  CAS  Google Scholar 

  20. Huang Y, Min CJ, Veronis G (2012) Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides. Opt Express 20:22233–22244

    Article  Google Scholar 

  21. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  22. Cao GT, Li HJ, Zhan SP, He ZH, Guo ZB, Xu XK, Yang H (2014) Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide. Opt Lett 39:216–219

    Article  Google Scholar 

  23. Piao XJ, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20:18994–18999

    Article  Google Scholar 

  24. Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17:13989–13994

    Article  CAS  Google Scholar 

  25. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stubs tructure. Opt Express 18:6191–6204

    Article  CAS  Google Scholar 

  26. Chen JJ, Sun CW, Gong QH (2014) Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Opt Lett 39:52–55

    Article  Google Scholar 

  27. Luo X, Zou XH, Li XF, Zhou Z, Pan W, Yan LS, Wen KH (2013) High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal–insulator–metal waveguide. Opt Lett 38:1585–1587

    Article  Google Scholar 

  28. Zhan GZ, Liang RS, Liang HT, Luo J, Zhao RT (2014) Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities. Opt Express 22:9912–9919

    Article  CAS  Google Scholar 

  29. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102

    Article  Google Scholar 

  30. Zand I, Abrishamian MS, Berini P (2013) Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs). Opt Express 21:79–86

    Article  Google Scholar 

  31. Zand I, Mahigir A, Pakizeh T, Abrishamian MS (2012) Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators. Opt Express 20:7516–7525

    Article  Google Scholar 

  32. Xiao SS, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937

    Article  Google Scholar 

  33. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  Google Scholar 

  34. Chen CH (2014) Plasmonic bandpass filter with cascaded rectangular ring resonators. Opt Lett 39:3227–3230

    Article  Google Scholar 

  35. Han Z, Van V, Herman WN, Ho PT (2009) Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt Express 17:12678–12684

    Article  CAS  Google Scholar 

  36. Nielsen MP, Elezzabi AY (2013) Ultrafast all-optical modulation in a silicon nanoplasmonic resonator. Opt Express 21:20274–20279

    Article  CAS  Google Scholar 

  37. Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85:053803

    Article  Google Scholar 

  38. Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall, Englewood Cliffs, Chapter 7

    Google Scholar 

  39. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  40. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  Google Scholar 

  41. Cao GT, Li HJ, Deng Y, Zhan SP, He ZH, Li BX (2014) Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9:1163–1169

    Article  CAS  Google Scholar 

  42. Wang YH, Wang YQ, Zhang Y, Liu ST (2009) Transmission through metallic array slits with perpendicular cuts. Opt Express 17:5014–5022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Hongjian Li and Yin Huang for their helpful discussions. This work was funded by the National Natural Science Foundation of China under Grant Nos. 11447240 and 11264013 and the Natural Science Foundation of Hunan province under Grant Nos. 2015JJ6092 and 12JJ4003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtao Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Cao, G., Wu, Y. et al. Theoretical Description of Dynamic Transmission Characteristics in MDM Waveguide Aperture-Side-Coupled with Ring Cavity. Plasmonics 10, 1537–1543 (2015). https://doi.org/10.1007/s11468-015-9971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9971-9

Keywords

Navigation