Skip to main content
Log in

Tuning the Plasmonic Extinction Resonances of Hexagonal Arrays of Ag Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonically enhanced effects on a self-assembled, hexagonal array layer of ~4-nm silver nanoparticles are analyzed using three-dimensional finite-difference time-domain (3D FDTD) simulations and compared against experimentally measured extinction spectra. The effect of particle size, lattice spacing, and lack of monodispersity of the hexagonal array of silver nanoparticles on the extinction resonance was investigated to help determine optimal design specifications for efficient organic solar power harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM (2000) Self-assembly of nanoparticles into structured spherical and network aggregates. Nature (London) 404(6779):746–748

    Article  CAS  Google Scholar 

  2. Brongersma ML, Polman A, Min KS, Boer E, Tambo T, Atwater HA (1998) Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation. Appl Phys Lett 72(20):2577–2579. doi:10.1063/1.121423

    Article  CAS  Google Scholar 

  3. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science (Washington, D C) 277(5329):1078–1080. doi:10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  4. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  5. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(22):6961–6968. doi:10.1021/jp036261n

    Article  CAS  Google Scholar 

  6. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kaell M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342. doi:10.1021/jp034234r

    Article  CAS  Google Scholar 

  7. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84(1):1–20. doi:10.1016/0368-1874(77)80399-7

    Article  CAS  Google Scholar 

  8. Krenn JR, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg FR, Weeber JC (2000) Design of multipolar plasmon excitations in silver nanoparticles. Appl Phys Lett 77(21):3379–3381. doi:10.1063/1.1327615

    Article  CAS  Google Scholar 

  9. Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125(10):2896–2898

    Article  CAS  Google Scholar 

  10. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  CAS  Google Scholar 

  11. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science (Washington, D C) 275(5303):1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  12. Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75(8):1063–1065. doi:10.1063/1.124597

    Article  CAS  Google Scholar 

  13. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. doi:10.1021/JA972332I

    Article  CAS  Google Scholar 

  14. Van Duyne RP, Hulteen JC, Treichel DA (1993) Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Silver island films and silver film over polymer nanosphere surfaces supported on glass. J Chem Phys 99(3):2101–2115. doi:10.1063/1.465276

    Article  Google Scholar 

  15. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875

    Article  CAS  Google Scholar 

  16. Sun C, Wang X (2015) Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10(37). doi:10.1007/s11468-015-9934-1

  17. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature (London) 424(6950):824–830. doi:10.1038/nature01937

    Article  CAS  Google Scholar 

  18. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759. doi:10.1063/1.1462610

    Article  CAS  Google Scholar 

  19. Royer P, Goudonnet JP, Warmack RJ, Ferrell TL (1987) Substrate effects on surface-plasmon spectra in metal-island films. Phys Rev B Condens Matter 35(8, Pt. 1):3753–3759

    Article  CAS  Google Scholar 

  20. Jin P, Xu G, Tazawa M, Yoshimura K (2003) Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings. Appl Phys A Mater Sci Process 77(3–4):455–459. doi:10.1007/s00339-002-1460-2

    CAS  Google Scholar 

  21. Yoon W-J, Jung K-Y, Liu J, Duraisamy T, Revur R, Teixeira FL, Sengupta S, Berger PR (2009) Efficient poly(3-hexylthiophene)-fullerene derivative bulk heterojunction photovoltaic devices using unique self-assembled layer of Ag nanoparticles with controllable particle-to-particle spacing. In: 2009 34th Ieee Photovoltaic Specialists Conference, vols 1–3. IEEE Photovoltaic Specialists Conference. IEEE, New York, pp 2065–2068

  22. Zou SL, Zhao L, Schatz GC (2003) Extinction spectra of silver nanoparticle arrays. In: Halas NJ (ed) Plasmonics: Metallic Nanostructures and Their Optical Properties, vol 5221. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham, pp 174–181

  23. Weeber J-C, Girard C, Krenn JR, Dereux A, Goudonnet J-P (1999) Near-field optical properties of localized plasmons around lithographically designed nanostructures. J Appl Phys 86(5):2576–2583. doi:10.1063/1.371095

    Article  CAS  Google Scholar 

  24. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag AP14 (3):302–307

  25. Teixeira FL (2008) Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans Antennas Propag 56(8):2150–2166. doi:10.1109/tap.2008.926767

    Article  Google Scholar 

  26. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic-waves. J Comput Phys 114 (2):185-200.  doi:10.1006/jcph.1994.1159

    Article  Google Scholar 

  27. Teixeira FL, Chew WC (1998) A general approach to extend Berenger’s absorbing boundary condition to anisotropic and dispersive media. IEEE Trans Antennas Propag 46(9):1386–1387. doi:10.1109/8.719984

    Article  Google Scholar 

  28. Teixeira FL, Chew WC (2000) Complex space approach to perfectly matched layers: a review and some new developments. Int J Numer Modell Electron Networks Devices Fields 13(5):441–455. doi:10.1002/1099-1204(200009/10)13:5<441::aid-jnm376>3.0.co;2-j

    Article  Google Scholar 

  29. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. [Erratum to document cited in CA152:315599]. Nat Mater 9(10):865. doi:10.1038/nmat2866

    Article  CAS  Google Scholar 

  30. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. doi:10.1038/nmat2629

    Article  CAS  Google Scholar 

  31. Hoevel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B Condens Matter 48(24):18178–18188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation for the support of this work under Grant No. ECCS-1202465. The FDTD code utilized is provided by Lumerical Solutions Inc., Vancouver, BC, Canada. ImageJ and its Java source code are in the public domain and are freely available from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Coe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, A., Luthra, A., Teixeira, F.L. et al. Tuning the Plasmonic Extinction Resonances of Hexagonal Arrays of Ag Nanoparticles. Plasmonics 10, 1505–1512 (2015). https://doi.org/10.1007/s11468-015-9963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9963-9

Keywords

Navigation