Skip to main content
Log in

Near Field Investigation of a Plasmonic Lüneburg Lens

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we investigate the interaction of surface plasmons with a plasmonic Lüneburg lens using near field scanning optical microscopy. Gray-scale electron beam lithography is used to prepare a dome-shaped resist structure on top of a gold film. This particular shape yields the effective refractive index profile of a Lüneburg lens for surface plasmons propagating at the film surface at an energy of \(\hbar \omega ={1.72}\) eV. Next to the Lüneburg lens a grating coupler is milled into the gold film with focused ion beam. The surface plasmons are launched to propagate through the lens and the near field pattern is scanned. We clearly identify a focal spot in the near field signal at the outer perimeter of the lens. In addition, we observe a beating pattern arising from further plasmon waves excited by higher orders of the grating coupler. The emergence of this beating pattern allows the detection of the plasmon’s wave fronts. An analytical model was used to retrieve the properties of the participating wave components. The measured near-field pattern could be modeled very well with electromagnetic simulations applying the effective refractive index approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozbay E (2006). Science (New York N Y) 311(5758):189. doi:10.1126/science.1114849

    Article  CAS  Google Scholar 

  2. Gramotnev D K, Bozhevolnyi S I (2010). Nat Photonics 4(2):83. doi:10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  3. Schuller J a , Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L (2010). Nat Mater 9 (3):193. doi:10.1038/nmat2630

    Article  CAS  Google Scholar 

  4. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol 111. Springer, Berlin

    Google Scholar 

  5. Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P (2008). Nat Mater 7 (6):442. doi:10.1038/nmat2162

    Article  CAS  Google Scholar 

  6. Homola J, Yee S S, Gauglitz G (1999). Sensors Actuators B Chem 54 (1-2):3. doi:10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  7. Rottler A, Harland M, Bröll M, Klingbeil M, Ehlermann J, Mendach S (2013). Phys Rev Lett 111(25). doi:10.1103/PhysRevLett.111.253901

  8. Pillai S, Catchpole K R, Trupke T, Green M a (2007). J Appl Phys 101(9):093105. doi:10.1063/1.2734885

    Article  Google Scholar 

  9. Atwater H A, Polman A (2010). Nat Mater 9(3):205. doi:10.1038/nmat2629

    Article  CAS  Google Scholar 

  10. Willets K a, Van Duyne R P (2007). Annu Rev Phys Chem 58:267. doi:10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  11. Kawata S, Inouye Y, Verma P (2009). Nat Photonics 3(7):388. doi:10.1038/nphoton.2009.111

    Article  CAS  Google Scholar 

  12. Boltasseva A, Nikolajsen T, Leosson K, Kjaer K, Larsen M, Bozhevolnyi S (2005). J Lightwave Technol 23(1):413. doi:10.1109/JLT.2004.835749

    Article  Google Scholar 

  13. Engheta N (2007). Science (New York N Y) 317(5845):1698. doi:10.1126/science.1133268

    Article  CAS  Google Scholar 

  14. Lal S, Link S, Halas N J (2007). Nat Photonics 1(11):641. doi:10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  15. Maier S, Atwater H (2005). Journal of Applied Physics 98(1):011101. doi:10.1063/1.1951057

    Article  Google Scholar 

  16. Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W (2006). Nature 440(7083):508. doi:10.1038/nature04594

    Article  CAS  Google Scholar 

  17. Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C, Zhang X (2005). Nano Lett 5(9):1726. doi:10.1021/nl051013j

    Article  CAS  Google Scholar 

  18. Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X (2011). Nat Nanotechnol 6(3):151. doi:10.1038/nnano.2010.282

    Article  CAS  Google Scholar 

  19. Leonhardt U (2006). Science (New York, N Y) 312(5781):1777. doi:10.1126/science.1126493

    Article  CAS  Google Scholar 

  20. Pendry J B, Schurig D, Smith D R (2006). Science (New York, N Y) 312 (5781):1780. doi:10.1126/science.1125907

    Article  CAS  Google Scholar 

  21. Chen H , Chan C T, Sheng P (2010). Nat Mater 9(5):387. doi:10.1038/nmat2743

    Article  CAS  Google Scholar 

  22. Liu Y, Zentgraf T, Bartal G, Zhang X (2010). Nano Lett 10(6):1991. doi:10.1021/nl1008019

    Article  CAS  Google Scholar 

  23. Huidobro P a, Nesterov M L, Martín-Moreno L, García-Vidal F J (2010). Nano lett 10(6):1985. doi:10.1021/nl100800c

    Article  CAS  Google Scholar 

  24. Drezet A, Hohenau A, Koller D, Stepanov A., Ditlbacher H, Steinberger B, Aussenegg F R, Leitner A, Krenn JR (2008). Mater Sci Eng B 149(3):220. doi:10.1016/j.mseb.2007.10.010

    Article  CAS  Google Scholar 

  25. Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg F R (2002). Appl Phys Lett 80(3):404. doi:10.1063/1.1435410

    Article  CAS  Google Scholar 

  26. Betzig E, Trautman J K (1992). Science (New York, N Y) 257(5067):189. doi:10.1126/science.257.5067.189

    Article  CAS  Google Scholar 

  27. Luneburg R K (1944) Mathematical Theory of Optics. University of California Press

  28. Geissler M, Xia Y (2004). Adv Mater 16(15):1249. doi:10.1002/adma.200400835

    Article  CAS  Google Scholar 

  29. Zienkiewicz O C, Taylor R L, Zhu JZ (2005) The Finite Element Method: Its Basis and Fundamentals: Its Basis and Fundamentals. Elsevier Science

  30. Noginov M A, Podolskiy V A, Zhu G, Mayy M, Bahoura M, Adegoke J A, Ritzo B A, Reynolds K (2008). Opt Express 16(2):1385. doi:10.1364/OE.16.001385

    Article  CAS  Google Scholar 

  31. Paul A, Zhen Y r, Wang Y, Chang W s, Xia Y, Nordlander P, Link S (2014). Nano Lett 14(6):3628. doi:10.1021/nl501363s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support of the Deutsche Forschungsgemeinschaft via ME 3600/1-1 and Graduiertenkolleg 1286 “Functional Metal-Semiconductor Hybrid Systems.” Furthermore, we thank Detlef Heitmann for fruitful discussions, Björn Beyersdorff for the fabrication of the FIB structure, and the Blick-Group at the University of Hamburg for additional funding.

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (grant numbers: Graduiertenkolleg 1286 and ME 3600/1-1) and by the Blick-Group at the University of Hamburg.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Ehlermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlermann, J., Vu, H. & Mendach, S. Near Field Investigation of a Plasmonic Lüneburg Lens. Plasmonics 10, 1513–1518 (2015). https://doi.org/10.1007/s11468-015-9960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9960-z

Keywords

Navigation