Skip to main content
Log in

Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We experimentally demonstrate an enhanced refractive index sensing using a dislocated double-layered metal grating (DDMG). The DDMG is capable of supporting a novel guided mode caused by the interaction between localized surface plasmon resonances (LSPRs) from the individual gold stripes and Wood’s anomaly in the dielectric grating layer between two gold gratings. We show that this guided mode can only be induced and mediated by the coupling of lattice plasmon resonances sustained by upper and lower gold grating through introducing a lateral displacement between the two gold gratings. The DDMG provides an experimental figure of merit (FOM) value up to 36 under normal incidence, which is superior to those of most of nanoplasmonic sensors relying on Fano resonances. Additionally, the DDMGs can be fabricated by a very simple and cost-effective method via a combination of two-beam interference lithography and metal deposition. Accompanied with high FOM and simple detection scheme, this sensor will be found in a wide range of applications in biomedical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  2. Brolo AG (2012) Nat Photonics 6:709

    Article  CAS  Google Scholar 

  3. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nat Mater 10:631–636

    Article  CAS  Google Scholar 

  4. Yao JM, Le AP, Gray SK, Moore JS, Rogers JA, Nuzzo RG (2010) Adv Mater 22:1102

    Article  CAS  Google Scholar 

  5. Lal S, Link S, Halas NJ (2007) Nat Photonics 1:641

    Article  CAS  Google Scholar 

  6. Lee KL, Chih MJ, Shi X, Ueno K, Misawa H, Wei PK (2012) Adv Mater 24:OP253

    CAS  Google Scholar 

  7. Kumar M, Sandeep CSS, Kumar G, Mishra YK, Philip R, Reddy GB (2014) Plasmonics 9:129

    Article  CAS  Google Scholar 

  8. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Nature 461:629

    Article  CAS  Google Scholar 

  9. Tiwari V, Khokar MK, Tiwari M, Barala S, Kumar M (2014) J Nanomed Nanotechnol 5:246

    Article  Google Scholar 

  10. Kim S, Jin JH, Kim YJ, Park IY, Kim Y, Kim SW (2008) Nature 453:757

    Article  CAS  Google Scholar 

  11. Gan QQ, Bartoli FJ, Kafafi ZH (2013) Adv Mater 25:2385

    Article  CAS  Google Scholar 

  12. Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B 54:3

    Article  CAS  Google Scholar 

  13. Mayer KM, Hafner JH (2011) Chem Rev 111:3828

    Article  CAS  Google Scholar 

  14. Dmitriev A, Hagglund C, Chen S, Fredriksson H, Pakizeh T, Kall M, Sutherland DS (2008) Nano Lett 8:3893

    Article  CAS  Google Scholar 

  15. Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Nano Lett 11:391

    Article  CAS  Google Scholar 

  16. Brian B, Sepulveda B, Alaverdyan Y, Lechuga LM, Kall M (2009) Opt Express 17:2015

    Article  CAS  Google Scholar 

  17. Jeppesen C, Xiao S, Mortensen NA, Kristensen A (2010) Opt Express 18:25075

    Article  CAS  Google Scholar 

  18. Lee SH, Johnson TW, Lindquist NC, Im H, Norris DJ, Oh SH (2012) Adv Funct Mater 22:4439

    Article  CAS  Google Scholar 

  19. Cattoni A, Ghenuche P, Haghiri-Gosnet AM, Decanini D, Chen J, Pelouard JL, Collin S (2011) Nano Lett 11:3557

    Article  CAS  Google Scholar 

  20. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Nat Mater 8:867

    Article  CAS  Google Scholar 

  21. Shen Y, Zhou JH, Liu TR, Tao YT, Jiang RB, Liu MX, Xiao GH, Zhu JH, Zhou ZK, Wang XH, Jin CJ, Wang JF (2013) Nat Commun 4:2381

    Google Scholar 

  22. Otte MA, Estevez MC, Regatos D, Lechuga LM, Sepulveda B (2011) ACS Nano 5:9179

    Article  CAS  Google Scholar 

  23. Bendana XM, Lozano G, Pirruccio G, Rivas JG, de Abajo FJG (2013) Opt Express 21:5636

    Article  CAS  Google Scholar 

  24. Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee TW, Gray SK, Nuzzo RG, Rogers JA (2006) Proc Natl Acad Sci U S A 103:17143

    Article  CAS  Google Scholar 

  25. Li WD, Ding F, Hu J, Chou SY (2011) Opt Express 19:3925

    Article  Google Scholar 

  26. Zhou W, Odom TW (2011) Nat Nanotechnol 6:423

    Article  CAS  Google Scholar 

  27. Kravets VG, Schedin F, Grigorenko AN (2008) Phys Rev Lett 101:087403

    Article  CAS  Google Scholar 

  28. Nikitin AG, Kabashin AV, Dallaporta H (2012) Opt Express 20:27941

    Article  CAS  Google Scholar 

  29. Burokur SN, Sellier A, Kante B, de Lustrac A (2009) Appl Phys Lett 94:201111

    Article  Google Scholar 

  30. Christ A, Martin OJF, Ekinci Y, Gippius NA, Tikhodeev SG (2008) Nano Lett 8:2171

    Article  CAS  Google Scholar 

  31. Taubert R, Ameling R, Weiss T, Christ A, Giessen H (2011) Nano Lett 11:4421

    Article  CAS  Google Scholar 

  32. Chan HB, Marcet Z, Woo K, Tanner DB, Carr DW, Bower JE, Cirelli RA, Ferry E, Klemens F, Miner J, Pai CS, Taylor JA (2006) Opt Lett 31:516

    Article  CAS  Google Scholar 

  33. Marcet Z, Paster JW, Carr DW, Bower JE, Cirelli RA, Klemens F, Mansfield WM, Miner JF, Pai CS, Chan HB (2008) Opt Lett 33:1410

    Article  CAS  Google Scholar 

  34. Liu TR, Shen Y, Shin W, Zhu QZ, Fan SH, Jin CJ (2014) Nano Lett 14:3848

    Article  CAS  Google Scholar 

  35. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Nano Lett 10:3184

    Article  CAS  Google Scholar 

  36. Kubo W, Fujikawa S (2011) Nano Lett 11:8

    Article  CAS  Google Scholar 

  37. Zhao J, Zhang CJ, Braun PV, Giessen H (2012) Adv Mater 24:OP247

    Article  CAS  Google Scholar 

  38. Liu SD, Yang Z, Liu RP, Li XY (2011) J Phys Chem C 115:24469

    Article  CAS  Google Scholar 

  39. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Phys Rev Lett 92:107401

    Article  CAS  Google Scholar 

  40. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Phys Rev B 58:6779

    Article  CAS  Google Scholar 

  41. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Opt Express 17:2334

    Article  CAS  Google Scholar 

  42. Schmid JH, Cheben P, Janz S, Lapointe J, Post E, Xu DX (2007) Opt Lett 32:1794

    Article  CAS  Google Scholar 

  43. Hoyt LF (1934) Ind Eng Chem 26:329

    Article  CAS  Google Scholar 

  44. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Nano Lett 10:2342

    Article  CAS  Google Scholar 

  45. Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA (2012) Nat Commun 3:1108

    Article  Google Scholar 

  46. Pryce IM, Kelaita YA, Aydin K, Atwater HA (2011) ACS Nano 5:8167

    Article  CAS  Google Scholar 

  47. Paivanranta B, Merbold H, Giannini R, Buchi L, Gorelick S, David C, Loffler JF, Feurer T, Ekinci Y (2011) ACS Nano 5:6374

    Article  CAS  Google Scholar 

  48. Offermans P, Schaafsma MC, Rodriguez SRK, Zhang YC, Crego-Calama M, Brongersma SH, Rivas JG (2011) ACS Nano 5:5151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science foundation of China (11374376, 11174374), the Key project of DEGP (No. 2012CXZD0001), SRFDP/RGC ERG (Ref.: M-CUHK410/12, Project Code: 2900701), and Innovative Talents Training Program for Doctoral Students of Sun Yat-sen University.

Ethical Statement

We have read the ethical responsibilities of the authors. We obey all the rules. The manuscript has not been submitted to more than one journal for simultaneous consideration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjun Jin.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Fabrication and simulation parameters and other supporting figures (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, T., Zhu, Q. et al. Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit. Plasmonics 10, 1489–1497 (2015). https://doi.org/10.1007/s11468-015-9959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9959-5

Keywords

Navigation