Skip to main content

Advertisement

Log in

Modeling and Characterization of Antireflection Coatings with Embedded Silver Nanoparticles for Silicon Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonics applied to solar cells is a widely investigated research field. Its main purpose is to include plasmonic structures in the cell design, in order to increase light trapping in the cell and, consequently, its energy conversion efficiency. Light scattering by plasmonic structures has been extensively studied by depositing metal nanoparticles on both sides of the cell, in order to enhance the transmission into the cell and/or the path length of the transmitted radiation. The effects due to the nanoparticles were studied also in the presence of dielectric layers covering the cell and working as anti-reflective coatings (ARC), although a complete discussion on the possible optimization of this setup is lacking. In this work, we provide a joint computational and experimental investigation of the optical properties of silver nanoparticles embedded in a SiO 2 ARC located on top of a crystalline silicon wafer. The effect of the particle size, particle position within the ARC layer, and surface coverage on the light transmitted to the silicon crystal are simulated by a finite-difference time-domain (FDTD) in-house software. On the experimental side, a composite anti-reflective structure, made of a silica layer with embedded silver nanoparticles, is deposited on top of silicon wafers. Samples differing in the size and position of the embedded metal particles are produced. For each configuration, the total reflectance is optically measured by means of a photo spectrometer coupled to an integrating sphere. We provide direct comparison of experimental and simulation results, along with an exhaustive discussion about the transmission efficiency of the investigated systems. We also discuss how our analysis might be extended to different configurations and cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gu M, Ouyang Z, Jia B, Stokes N, Fahim N, Li X, Ventura MJ, Shi Z (2012) Nanplasmonics: a frontier of photovoltaic solar cells. Nanophotonics 1:235–248

    Article  CAS  Google Scholar 

  2. Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985

    Article  CAS  Google Scholar 

  3. Zhang YN, Stokes N, Jia BH, Fan SH, Gu M (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci Rep 4:4939

    CAS  Google Scholar 

  4. Munday JN, Atwater HA (2011) Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett 11:2195–2201

    Article  CAS  Google Scholar 

  5. Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green MA (2012) Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol Energy Mater Sol Cells 101:217–226

    Article  CAS  Google Scholar 

  6. Diukman I, Orenstein M (2011) How front side plasmonic nanostructures enhance solar cell efficiency. Sol Energy Mater Sol Cells 95:2628–2631

    Article  CAS  Google Scholar 

  7. Pillai S, Beck FJ, Catchpole KR, Ouyang Z, Green MA (2011) The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. J Appl Phys 073105:109

    Google Scholar 

  8. Xu R, Wang XD, Song L, Liu W, Ji A, Yang FH, Li J (2012) Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Opt Express 20:5061–5068

    Article  CAS  Google Scholar 

  9. El Daif O, Tong L, Figeys B, Van Nieuwenhuysen K, Dmitriev A, Van Dorpe P, Gordon I, Dross F (2012) Front side plasmonic effect on thin silicon epitaxial solar cells. Sol Energy Mater Sol Cells:104

  10. Starowicz Z, Lipinski M, Berent K, Socha R, Szczepanowicz K, Kruk T (2013) Antireflection TiO x coating with plasmonic metal nanoparticles for silicon solar cells. Plasmonics 8:41–43

    Article  CAS  Google Scholar 

  11. Cortes-Juan F, Chaverri Ramos C, Connolly JP, David C, Garcia de Abajo FJ, Hurtado J, Mihailetchi VD, Ponce-Alcantara S, Sanchez G (2013) Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. J Renew Sust Energ 5:033116

    Article  Google Scholar 

  12. Paris A, Vaccari A, Calà Lesina A, Serra E, Calliari L (2012) Plasmonic scattering by metal nanoparticles for solar cells. Plasmonics 7:525–534

    Article  CAS  Google Scholar 

  13. Vaccari A, Calà Lesina A, Cristoforetti L, Chiappini A, Crema L, Calliari L, Ramunno L, Berini P, Ferrari M (2014) Light-opals interaction modeling by direct numerical solution of Maxwell’s equations. Opt Express 22:27739–27749

    Article  Google Scholar 

  14. Lesina AC, Vaccari A, Berini P, Ramunno L (2015) On the convergence and accuracy of the FDTD method for nanoplasmonics. Optics Express 23(8):10481–10497

    Article  Google Scholar 

  15. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. 03

    Article  CAS  Google Scholar 

  16. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105

    Article  Google Scholar 

  17. Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105(11):114310

    Article  Google Scholar 

  18. Rasband WS ImageJ. http://imagej.nih.gov/ij/, 1997–2014

  19. Blakers AW, Green MA (1986) 20 % efficiency silicon solar cells. Appl Phys Lett 48(3):215–217

    Article  CAS  Google Scholar 

  20. ASTM Standard G173 (2008) Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. In: Annual book of ASTM standards, vol 12

  21. Paternoster G, Zanuccoli M, Bellutti P, Ferrario L, Ficorella F, Fiegna C, Magnone P, Mattedi F, Sangiorgi E (2015) Fabrication, characterization and modeling of a silicon solar cell optimized for concentrated photovoltaic applications. Sol Energy Mater Sol Cells 134:407–416

    Article  CAS  Google Scholar 

  22. Winans JD, Hungerford C, Shome K, Rothberg LJ, Fauchet PM (2015) Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvments with Ag nanoparticles on the front, the back, and both. Opt. Express 23:A92–A105

    Article  Google Scholar 

  23. Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A (2011) Optical impedance matching using coupled plasmonic nanoparticle arrays. Nanoletters 11:1760–1765

    Article  CAS  Google Scholar 

  24. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd ed. Artech House

  25. Taflove A, Johnson SG, Oskooi A (2013) Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House

  26. Taflove A, Brodwin ME (1975) Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans Microwave Theory Tech 23:623–630

    Article  Google Scholar 

  27. Roden JA, Gedney SD (2000) Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Technol Lett 27:334–339

    Article  Google Scholar 

  28. Palik ED (1985) Handbook of optical constants of solids. Academic Press

  29. Vial A, Laroche T, Dridi M, Le Cunff L (2011) A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A 103:849–853

    Article  CAS  Google Scholar 

  30. Prokopidis KP, Zografopoulos DC (2013) A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures. J Light Technol 31:2467–2476

    Article  Google Scholar 

  31. Deinega A, John S (2012) Effective optical response of silicon to sunlight in the finite-difference time-domain method. Opt Lett 37:112–114

    Article  CAS  Google Scholar 

  32. Green MA, Keevers MJ (1995) Optical properties of intrinsic silicon at 300 K. Prog Photovolt 3:189–192

    Article  CAS  Google Scholar 

  33. SciNet. https://support.scinet.utoronto.ca/wiki/index.php/BGQ

  34. Mitchell B, Peharz G, Siefer G, Peters M, Gandy T, Goldschmidt JC, Benick J, Glunz SW, Bett AW, Dimroth F (2011) Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency. Prog Photovolt Res Appl 19:61– 72

    Article  CAS  Google Scholar 

  35. Berini P (2014) Surface plasmon photodetectors and their application. Laser Photonics Rev 8:197–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Alessio Paris recognizes financial support by Provincia Autonoma di Trento under Madelena project. We acknowledge IBM Canada Research and Development Centre, the Southern Ontario Smart Computing Innovation Platform (SOSCIP), and SciNet (Compute Canada) for the technical support on the IBM Blue Gene/Q.

Compliance with ethical standards

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesina, A.C., Paternoster, G., Mattedi, F. et al. Modeling and Characterization of Antireflection Coatings with Embedded Silver Nanoparticles for Silicon Solar Cells. Plasmonics 10, 1525–1536 (2015). https://doi.org/10.1007/s11468-015-9957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9957-7

Keywords

Navigation