Skip to main content
Log in

Theoretical Analysis of Multilayer Surface Plasmon Resonance Sensors Using Thin-Film Optical Admittance Formalism

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A theoretical analysis of surface plasmon resonance (SPR) behavior of conventional Ag sensor within the Kretschmann configuration is reported using thin-film optical admittance formalism. We examine the additional layer thickness and refractive index effects on optical admittance by considering Ag/SiO2, Ag/TiO2, and Ag/Si sensors. Theoretical results show that imaginary part of admittance is more sensitive to the sensing medium refractive index change than its real part, and a maximum of angular sensitivity reached by the sensors may be obtained simply by calculating the shift of the incident angle corresponding to the minimum of admittance imaginary parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Homola J (2006) Surface plasmon resonance based sensors, Springer series on chemical sensors and biosensors. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  2. Nylander C, Liedberg B, Lind T (1982) Gas detection by means of surface plasmons resonance. Sensors Actuators 3:79

    Article  CAS  Google Scholar 

  3. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446

    Article  CAS  Google Scholar 

  4. Ong BH, Yuan X, Tjin SC, Zhang J, Ng HM (2006) Optimized film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensors Actuators B Chem 114(2):1028–1034

    Article  CAS  Google Scholar 

  5. Nenninger GG, Piliarik M, Homola J (2002) Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas Sci Technol 13(12):2038–2046

    Article  CAS  Google Scholar 

  6. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch A 23:2135–2136

    CAS  Google Scholar 

  7. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Physiother 216:398–410

    CAS  Google Scholar 

  8. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466

    Article  CAS  Google Scholar 

  9. Lahav A, Auslender M, Abdulhalim I (2008) Sensitivity enhancement of guided-wave surface-plasmon resonance sensors. Opt Lett 33:2539–2541

    Article  CAS  Google Scholar 

  10. Lahav A, Shalabney A, Abdulhalim I (2009) Surface plasmon resonance sensor with enhanced sensitivity using nano-top dielectric layer. J Nanophoton 3:031501

    Article  Google Scholar 

  11. Shalebney A, Abdulhalim I (2010) Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors Actuators A 159:24–32

    Article  Google Scholar 

  12. Benkabou F, Chikhi M (2014) Theoretical investigation of sensitivity enhancement in dielectric multilayer surface plasmon sensor. Phys Status Solidi (a) 211(3):700–704

    Article  CAS  Google Scholar 

  13. Macleod HA. Thin-films optical filters. Third edition, Institute of Physics Publishing Bristol and Philadelphia, ISBN 0 7503 0688 2

  14. Lin C-W, Chen K-P, Su M-C, Hsiao T-C, Lee S-S, Lin S, Shi X-J, Lee C-K (2006) Admittance loci design method for multilayer surface plasmon resonance devices. Sensors Actuators B 117:219–229

    Article  CAS  Google Scholar 

  15. Brahmachari K, Ghosh S, Ray M (2013) Surface plasmon resonance based sensing of different chemical and biological samples using admittance loci method. Photonic Sensors 3(2):159–167

    Article  CAS  Google Scholar 

  16. Brahmachari K, Ray M (2013) Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Front Optoelectron 6(2):185–193, Erratum in: Frontiers of Optoelectronics, vol. 6, No. 3, pp. 353, 2013

    Article  Google Scholar 

  17. Brahmachari K, Ray M (2013) Performance of admittance loci based design of plasmonic sensor at infrared wavelength. Opt Eng 52(8):087112

    Article  Google Scholar 

  18. Chiu N, Yu C, Nien S, Lee J, Kuan C, Wu K, Lee C, Lin C (2007) Enhancement and tunability of active plasmonic by multilayer grating coupled emission. Opt Express 15(18):11608

    Article  CAS  Google Scholar 

  19. Lee C, Wu K, Chen S, Ma S (2007) Optical monitoring and real time admittance loci calculation through polarization interferometer. Opt Express 15(26):17536

    Article  Google Scholar 

  20. Chen S, Wu K, Kuo C, Ma S, Lee C (2009) System for measuring optical admittance of a thin film stack. Opt Rev 16(4):479–482

    Article  CAS  Google Scholar 

  21. Lin CW, Chen KP, Hsiao CN, Lin S, Lee CK (2006) Design and fabrication of an alternating dielectric multilayer device for surface plasmon resonance sensor. Sensors Actuators B 113:169–176

    Article  CAS  Google Scholar 

  22. Yao M, Tan O, Tjin S, Wolfe JC (2008) Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior. Acta Biomater 4:2016–2027

    Article  CAS  Google Scholar 

  23. Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chikhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhi, M., Benkabou, F. Theoretical Analysis of Multilayer Surface Plasmon Resonance Sensors Using Thin-Film Optical Admittance Formalism. Plasmonics 10, 1467–1472 (2015). https://doi.org/10.1007/s11468-015-9945-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9945-y

Keywords

Navigation