Skip to main content
Log in

Analysis of Asymmetric Dipoles Interacting in Heterogeneous Metal Nanorod Dimers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The localized electric field enhancement of Au-Ag nanorods dimer is theoretically investigated based on finite element method (FEM). An analytical mutual-interference model between asymmetric dipole-dimer has been built to describe the dipoles coupling with different resonance modes in heterogeneous dimer. Three prominent enhancement peaks could be observed from ultraviolet to visible spectrum, in which the ultraviolet resonance especially corresponds to a higher mode in both Ag and Au nanorods. The results reveal the strong coupling mechanism among different dipoles existing in the asymmetric dipole system, which could support the design of plasmonic nanodevices in larger resonance wavelength range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang X, Li M, Lingyan Meng L et al (2014) Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates. ACS Nano 8:528–536

    Article  CAS  Google Scholar 

  2. Harrison RK, Ben-Yakar A (2010) Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate. Opt Express 18:22559

    Article  Google Scholar 

  3. Tong L, Wei Q, Wei A et al (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85:21–32

    Article  CAS  Google Scholar 

  4. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  5. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  6. Chen C-D, Cheng S-F, Chau L-K et al (2007) Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens Bioelectron 22:926–932

    Article  CAS  Google Scholar 

  7. Bachelier G, Russier-Antoine I, Benichou E et al (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101:197401

    Article  CAS  Google Scholar 

  8. Yang Z-J, Zhang Z-S, Zhang W et al (2010) Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers. Appl Phys Lett 96:131113

    Article  Google Scholar 

  9. Yang Z-J, Zhang Z-S, Zhang L-H et al (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36:1542–1544

    Article  Google Scholar 

  10. Kim S, Jin J, Kim Y-J et al (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760

    Article  CAS  Google Scholar 

  11. Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10:6079–6089

    Article  CAS  Google Scholar 

  12. Willingham B, Brandl DW, Nordlander P (2008) Plasmon hybridization in nanorod dimers. Appl Phys B 93:209–216

    Article  CAS  Google Scholar 

  13. Jain PK, El-Sayed MA (2009) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164

    Article  Google Scholar 

  14. Liu M, Lee T-W, Gray SK (2009) Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102:107401

    Article  Google Scholar 

  15. Knight MW, Liu L, Wang Y et al (2012) Aluminum plasmonic nanoantennas. Nano Lett 12:6000–6004

    Article  CAS  Google Scholar 

  16. Nicoletti O, Martijn W, Asger Mortensen N et al (2011) Surface plasmon modes of a single silver nanorod: an electron energy loss study. Opt Express 16:15371

    Article  Google Scholar 

  17. Johnson PB, Christy RW et al (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  18. Parkins GR, Lawrence WE, Christy RW (1976) Intraband optical conductivity of Cu, Ag, and Au: contribution from electron–electron scattering. Phys Rev B 6:6409–6416

    Google Scholar 

  19. Jain PK, El-Sayed MA (2008) Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett 8:4347–4352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under the Grant Nos. 61275008, 61176113, and 51335008, the special-funded program on national key scientific instruments and equipment development of China under the Grant No. 2012YQ12004706.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangqing Du or Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Yang, Q., Du, G. et al. Analysis of Asymmetric Dipoles Interacting in Heterogeneous Metal Nanorod Dimers. Plasmonics 10, 1325–1330 (2015). https://doi.org/10.1007/s11468-015-9939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9939-9

Keywords

Navigation