Skip to main content
Log in

Fourier Plane Imaging Microscopy for Detection of Plasmonic Crystals with Periods beyond the Optical Diffraction Limit

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using a simple optical microscope, composed of a plasmonic ultrathin condenser, an objective lens, and a camera, we show that the captured Fourier plane images can provide more information than the real plane images that would be obtained from the corresponding compound microscope. Using this simple Fourier plane imaging approach, we demonstrate that reconstructed non-scanning images of plasmonic crystals with lateral resolution beyond the optical diffraction limit can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hetcht E (1998) Optics, Thirdth edn. Addison Wesley, Reading

    Google Scholar 

  2. Born M, Wolf E (1975) Principles of Optics, Vth edn. Pergamon Press, Oxford

    Google Scholar 

  3. Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, New York

  4. Durant S, Liu Z, Steele JM, Zhang X (2006) Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J Opt Soc Am B 23(11):2383–2392

    Article  CAS  Google Scholar 

  5. Hopkins HH, Barham PM (1950) The influence of the condenser on microscopic resolution. Proc Phys Soc 63:737–744

    Article  Google Scholar 

  6. Köheler H (1981) On Abbe’s theory of image formation in the microscope. Opt Acta 28:1691–1701

  7. Vainrub A, Pustovyy O, Vodyanoy V (2006) Resolution of 90 nm (λ/5) in an optical transmission microscope with annular condenser. Opt Lett 31:2855–2857

    Article  Google Scholar 

  8. Desai DB, Dominguez D, Bernussi AA, Grave de Peralta L (2014) Ultra-thin condensers for optical subwavelength resolution microscopy. J Appl Phys 115:093103

    Article  Google Scholar 

  9. Zheng G, Kolner C, Yang C (2011) Microscopy refocusing and dark-field imaging by using a simple LED array. Opt Lett 36:3987

    Article  Google Scholar 

  10. Zheng G, Horstmeyer R, Yang C (2013) Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photonics 7:739–745

    Article  CAS  Google Scholar 

  11. Molina L, Dominguez D, Desai DB, O’Loughlin T, Bernussi AA, Grave de Peralta L (2014) Hemispherical digital optical condensers with no lenses, mirrors, or moving parts. Opt Express 22:6948–6957

    Article  Google Scholar 

  12. Rodriguez R, Regan CJ, Ruiz-Columbié A, Agutu W, Bernussi AA, Grave de Peralta L (2011) Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses. J Appl Phys 110:083109

    Article  Google Scholar 

  13. Regan CJ, Grave de Peralta L, Bernussi AA (2012) Equifrequency curve dispersion in dielectric-loaded plasmonic crystals. J Appl Phys 111:073105

    Article  Google Scholar 

  14. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  Google Scholar 

  15. Kittel C (1996) Introduction to solid state physics, 7th edn. John Wiley & Sons, New York

  16. Lopez-Boada R, Regan CJ, Dominguez D, Bernussi AA, Grave de Peralta L (2013) Fundaments of optical far-field subwavelength resolution based on illumination with surface waves. Opt Express 21:11928–11942

    Article  Google Scholar 

  17. Frisbie SP, Chesnutt CF, Holtz ME, Krishnan A, Grave de Peralta L, Bernussi AA (2009) Image formation in wide-field microscopes based on leakage of surface plasmon-coupled fluorescence. IEEE Photonics J 1:153

    Article  Google Scholar 

  18. Frisbie SP, Regan CJ, Krishnan A, Chesnutt C, Ajimo J, Bernussi AA, Grave de Peralta L (2010) Characterization of polarization states of surface plasmon polariton modes by Fourier-plane leakage microscopy. Opt Commun 283:5255–5260

    Article  CAS  Google Scholar 

  19. Martin LC (1966) The theory of the microscope. American Elsevier, New York

    Google Scholar 

  20. Dominguez D, Regan CJ, Lopez-Boada R, Bernussi AA, Grave de Peralta L (2014) Observation of coherence-related phenomena in experiments with surface plasmon polaritons excited by fluorescence. Opt Commun 315:270–274

    Article  CAS  Google Scholar 

  21. Regan CJ, Thiabgoh O, Grave de Peralta L, Bernussi AA (2012) Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation. Opt Express 20:8658

    Article  CAS  Google Scholar 

  22. Grave de Peralta L, Regan CJ, Bernussi AA (2013) SPP tomography: a simple wide-field nanoscope. Scanning 35:246–252

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF CAREER Award (ECCS-0954490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dominguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, D., Alhusain, M., Alharbi, N. et al. Fourier Plane Imaging Microscopy for Detection of Plasmonic Crystals with Periods beyond the Optical Diffraction Limit. Plasmonics 10, 1337–1344 (2015). https://doi.org/10.1007/s11468-015-9938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9938-x

Keywords

Navigation