Skip to main content
Log in

An Elliptical Core D-Shaped Photonic Crystal Fiber-Based Plasmonic Sensor at Upper Detection Limit

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present an elliptical core D-shaped photonic crystal fiber-based plasmonic sensor, and the coupling characters for different refractive index of detected analyte are investigated by finite element method. It is found that the sensitivity depends strongly on the slope of the phase difference at resonant wavelength for phase interrogation, and the sensitivity can be up to 2.2 × 105 deg/RIU/cm when the sensor works close up to the upper detection limit of analyte refractive index of 1.373. Based on our discussion, the higher sensitivity always associates with narrower dynamic sensing range. As a comparison, wavelength interrogation has been included in the paper, and it offers wider dynamic sensing range and higher upper detection limit but much lower sensitivity. Overall, the resonances of different order plasmonic modes and core mode play essential role in both schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensor Actuators B Chem 54(1–2):3–15. doi:10.1016/s0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  2. Nelson SG, Johnston KS, Yee SS (1996) High sensitivity surface plasmon resonance sensor based on phase detection. Sensor Actuators B Chem 35(1–3):187–191. doi:10.1016/S0925-4005(97)80052-4

    Article  CAS  Google Scholar 

  3. Xihong Z, Yu C-S, Woo-Hu T, Ching-Ho W, Tsung-Liang C, Chii-Wann L, Yu-Chia T, Mu-Shiang W (2015) Improvement of the sensitivity of the surface plasmon resonance sensors based on multi-layer modulation techniques. Opt Commun :33532–36. doi:10.1016/j.optcom.2014.09.001

  4. Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 17(1):124–131. doi:10.1088/0957-4484/17/1/020

    Article  CAS  Google Scholar 

  5. Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y, Li C (2010) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt UK 12(1). doi:10.1088/2040-8978/12/1/015005

  6. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensor Actuators B Chem B12(3):213–220. doi:10.1016/0925-4005(93)80021-3

    Article  Google Scholar 

  7. Shuai B, Xia L, Zhang Y, Liu D (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20(6):5974–5986. doi:10.1364/oe.20.005974

    Article  CAS  Google Scholar 

  8. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621. doi:10.1364/oe.14.011616

    Article  CAS  Google Scholar 

  9. Nannan L, Ran W, Wenhua L, Ying L, Jianquan Y (2014) Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9):16035–16045. doi:10.3390/s140916035

    Article  Google Scholar 

  10. Ming T, Ping L, Li C, Chao L, Deming L (2012) All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt Commun 285(6):1550–1554. doi:10.1016/j.optcom.2011.11.104

    Article  Google Scholar 

  11. Rezaei N, Yahaghi A (2014) A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: modeling and optimization. IEEE Sensors J 14(10):3611–3615. doi:10.1109/jsen.2014.2329896

    Article  Google Scholar 

  12. Yan HT, Liu Q, Ming Y, Luo W, Chen Y, Lu YQ (2013) Metallic grating on a D-shaped fiber for refractive index sensing. IEEE Photonics J 5(5):6. doi:10.1109/jphot.2013.2284244

    Article  Google Scholar 

  13. He YJ (2013) Novel D-shape LSPR fiber sensor based on nano-metal strips. Opt Express 21(20):23498–23510. doi:10.1364/oe.21.023498

    Article  CAS  Google Scholar 

  14. Chien-Hsing C, Jaw-luen T, Wei-Te W (2010) Fabrication of the novel multi-D-shape fiber sensor by femtosecond laser machining with the diffractive optical element. Design Test Integration and Packaging of MEMS/MOEMS (DTIP), 2010 Symposium on. IEEE :382–386

  15. Homola J (2006) Surface plasmon resonance sensors. Springer 4 doi:10.1007/b100321

  16. Kabashin AV, Patskovsky S, Grigorenko AN (2009) Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 17(23):21191–21204. doi:10.1364/oe.17.021191

    Article  CAS  Google Scholar 

  17. Kashif M, Bakar AAA, Arsad N, Shaari S (2014) Development of phase detection schemes based on surface plasmon resonance using interferometry. Sensors 14(9):15914–15938. doi:10.3390/s140915914

    Article  Google Scholar 

  18. Huang Y, Ho HP, Kong SK, Kabashin AV (2012) Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann Phys 524(11):637–662. doi:10.1002/andp.201200203

    Article  CAS  Google Scholar 

  19. Maji PS, Chaudhuri PR (2014) Dispersion properties of the square-lattice elliptical-core PCFs. Am J Opt Photon 2(1):1–6. doi:10.11648/j.ajop.20140201.11

    Google Scholar 

  20. Sellmeier W (1871) Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. Ann Phys Chem 219(6):272–282. doi:10.1002/andp.18712190612

    Article  Google Scholar 

  21. Shi F, Zhou G, Li D, Peng L, Hou Z, Xia C (2014) Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires. Plasmonics :1–6. doi:10.1007/s11468-014-9813-1

  22. Rioux D, Vallieres S, Besner S, Munoz P, Mazur E, Meunier M (2014) An analytic model for the dielectric function of Au, Ag, and their alloys. Adv Opt Mater 2(2):176–182. doi:10.1002/adom.201300457

    Article  Google Scholar 

  23. Zhang ZH, Shi YF, Bian BM, Lu J (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922. doi:10.1364/oe.16.001915

    Article  Google Scholar 

  24. Tan ZX, Hao X, Shao YH, Chen YZ, Li XJ, Fan P (2014) Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt Express 22(12):15049–15063. doi:10.1364/oe.22.015049

    Article  Google Scholar 

  25. Sheridan AK, Harris RD, Bartlett PN, Wilkinson JS (2004) Phase interrogation of an integrated optical SPR sensor. Sensor Actuators B Chem 97(1):114–121. doi:10.1016/j.snb.2003.08.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the State Key Development Program for Basic Research of China under Grant No. 2010CB327604, and the National Natural Science Foundation of China under Grant No. 61377100.

Compliance with Ethical Standards

We ensure this manuscript complies with the Committee on Publication Ethics (COPE) guidelines applicable for this journal. All authors in this manuscript have consented to submitt it to the journal—Plasmonics; the authors whose names appear on the submission have contributed sufficiently to the scientific work and hence share collective responsibility and accountability for the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Peng, L., Zhou, G. et al. An Elliptical Core D-Shaped Photonic Crystal Fiber-Based Plasmonic Sensor at Upper Detection Limit. Plasmonics 10, 1263–1268 (2015). https://doi.org/10.1007/s11468-015-9931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9931-4

Keywords

Navigation