Enhancement of the Second and Third Harmonic Generations in Nanorods and Nanotubes Based on Metal Electron Nonlinear Responses and Dielectric Nonlinearity

Abstract

In this paper, we investigated the second harmonic (SH) and the third harmonic (TH) generations in nanorods and nanotubes. Nonlinear free and bound electrons responses of metal combined with the third-order nonlinearity of dielectric core were utilized to study the nonlinear response of nanotubes made of noble metals such as gold. The impacts of the dielectric constant of core medium, thickness of metal shell, and size of nanotube on the SH and TH conversion efficiency are reported. The physical interpretations behind the results are discussed. Finally, we have shown that enhancement of the SH and TH generations are more noticeable and adjustable by varying the core-shell parameters compared to those of nanorods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  2. 2.

    Kauranenand M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  Google Scholar 

  3. 3.

    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    CAS  Article  Google Scholar 

  4. 4.

    Zhu W, Sikdar D, Xiao F, Kang M, Premaratne M (2014) Gold nanoparticles with gain-assisted coating for ultra-sensitive biomedical sensing. Plasmonics 14:085001

    Google Scholar 

  5. 5.

    Levin CS, Kundu J, Barhoumi A, Halas N (2009) Nanoshell based substrates for surface enhanced spectroscopic detection of biomolecules. J Analyst 134:1745–1750

    CAS  Article  Google Scholar 

  6. 6.

    Kalele SA, Ashtaputre SS, Hebalkar NY, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2005) Optical detection of antibody using silica-silver core-shell particles. Chem Phys Lett 404:136–141

    CAS  Article  Google Scholar 

  7. 7.

    Brown MD, Suteewong T, Kumar RS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445

    CAS  Article  Google Scholar 

  8. 8.

    Acar H, Coenen T, Polman A, Kuipers LK (2012) Dispersive ground plane core_shell type optical monopole antennas fabricated with elctron beam induced deposition. ACS Nano 6:8226–8232

    CAS  Article  Google Scholar 

  9. 9.

    Li J, Engheta N (2007) Core-shell nanowire optical antennas fed by slab waveguides. IEEE Trans Antennas Propag 55:3018–3026

    Article  Google Scholar 

  10. 10.

    Hossain MM, Turner MD, Gu M (2011) Ultrahigh nonlinear nanoshell plasmonic waveguide with total energy confinement. Opt Express 19:23800–23808

    CAS  Article  Google Scholar 

  11. 11.

    Caruso F, Spasova M, Salgueiriño-Maceira V, Liz-Marzán LM (2001) Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv Mater 13:1090–1094

    CAS  Article  Google Scholar 

  12. 12.

    Yoo SH, Liu L, Park SJ (2009) Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis. J Colloid Interface Sci 339:183–186

    CAS  Article  Google Scholar 

  13. 13.

    Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12:4329–4335

    Article  Google Scholar 

  14. 14.

    Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M (2012) Silica–metal core–shell nanostructures. Adv Colloid Interf Sci 170:28–47

    CAS  Article  Google Scholar 

  15. 15.

    Sipe JE (1980) Bulk-selvedge coupling theory for the optical properties of surfaces. Phys Rev B 22:1589–1599

    CAS  Article  Google Scholar 

  16. 16.

    Liebsch A (1988) Second-harmonic generation at simple metal surfaces. Phys Rev Lett 61:1897–1907

    Article  Google Scholar 

  17. 17.

    Benedetti A, Centini M, Bertolotti M, Sibilia C (2011) Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt Express 19:26752–26767

    Article  Google Scholar 

  18. 18.

    Zhang Y, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11:5519–5523

    CAS  Article  Google Scholar 

  19. 19.

    Singh AK, Senapati D, Neely A, Kolawole G, Hawker C, Ray PC (2009) Nonlinear optical properties of triangular silver nanomaterials. J Phys Chem Lett 481:94–98

    CAS  Article  Google Scholar 

  20. 20.

    Canfield BK, Husu H, Laukkanen J, Bai BF, Kuittinen M, Turunen J, Kauranen M (2007) Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers. Nano Lett 7:1251–1255

    CAS  Article  Google Scholar 

  21. 21.

    Centini M, Benedetti A, Sibilia C, Bertolotti M (2011) Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation. Opt Express 19:1818–1832

    Article  Google Scholar 

  22. 22.

    Dadap JI, Shan J, Heinz TF (2004) Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J Opt Soc Am B 21:1328–1347

    CAS  Article  Google Scholar 

  23. 23.

    Neacsu CC, Reider GA, Raschke MB (2005) Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B 71:201402

    Article  Google Scholar 

  24. 24.

    Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet PF (2010) Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys Rev Lett 105:077401

    CAS  Article  Google Scholar 

  25. 25.

    Bachelier G, Butet J, Russier-Antoine I, Jonin C, Benichou E, Brevet PF (2010) Origin of the optical second-harmonic generation in spherical gold nanoparticles: local surface and non-local bulk contributions. Phys Rev B 8:235403

    Article  Google Scholar 

  26. 26.

    Taher Rahmati A, Granpayeh N (2014) Low power nonlinear active devices based on intrinsic metal nonlinearities IEEE. J Lightwave Technol 32:4004–4010

    Article  Google Scholar 

  27. 27.

    Chen K, Durak C, Heflin JR, Robinson HD (2007) Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films. Nano Lett 7:254–258

    CAS  Article  Google Scholar 

  28. 28.

    Butet J, Russier-Antoine I, Jonin C, Lascoux N, Benichou E, Brevet PF (2013) Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing. J Phys Chem C 117:1172–1177

    CAS  Article  Google Scholar 

  29. 29.

    Wunderlich S, Peschel U (2013) Plasmonic enhancement of second harmonic generation on metal coated nanoparticles. Opt Express 21:18611–18623

    Article  Google Scholar 

  30. 30.

    TaherRahmati A, Granpayeh N (2010) Reduction of the pump power threshold in the nonlinear all-optical photonic crystal directional coupler switches. Appl Opt 49:6952–6959

    Article  Google Scholar 

  31. 31.

    Taher Rahmati A, Granpayeh (2011) Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler. Optik 122:502–505

    Article  Google Scholar 

  32. 32.

    Liu J, Brio M, Zeng Y, Zakharian AR, Hoyer W, Koch SW, Moloney JV (2010) Generalization of the FDTD algorithm for simulations of hydrodynamic nonlinear Drude model. J of Comput Phys 229:5921–5932

    CAS  Article  Google Scholar 

  33. 33.

    Davoyan AR (2011) Plasmonic couplers with metal nonlinearities. Phys Lett A 375:1615–1618

    CAS  Article  Google Scholar 

  34. 34.

    Zeng Y, Hoyer W, Liu J, Koch SW, Moloney JV (2009) Classical theory for second-harmonic generation from metallic nanoparticles. Phys Rev B 79:235109

    Article  Google Scholar 

  35. 35.

    Zwas G (1973) On two step Lax-Wendroff methods in several dimensions. Numer Math 20:350–355

    Article  Google Scholar 

  36. 36.

    Ginzburg P, Krasavin AV, Zayats AV (2013) Cascaded second-order surface plasmon solitons due to intrinsic metal nonlinearity. J Mod Phys 15:013031

    Google Scholar 

  37. 37.

    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    CAS  Article  Google Scholar 

  38. 38.

    Bardhan R, Grady NK, Ali T, Halas NJ (2010) Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. ACS Nano 4:6169–6179

    CAS  Article  Google Scholar 

  39. 39.

    Boyd RW (1992) Nonlinear optics. Academic, California

    Google Scholar 

  40. 40.

    Davis T, Vernon K, Gómez D (2009) Effect of retardation on localized surface plasmon resonances in a metallic nanorod. Opt Express 17:23655–23663

    CAS  Article  Google Scholar 

  41. 41.

    Lippitz M, Dijk M, Orrit M (2005) Third-harmonic generation from single gold nanoparticles. Nano Lett 5:799–802

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Granpayeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmati, A.T., Granpayeh, N. Enhancement of the Second and Third Harmonic Generations in Nanorods and Nanotubes Based on Metal Electron Nonlinear Responses and Dielectric Nonlinearity. Plasmonics 10, 1201–1209 (2015). https://doi.org/10.1007/s11468-015-9921-6

Download citation

Keywords

  • Nonlinear plasmonics
  • Hydrodynamic model
  • Second harmonic generation
  • Third harmonic generation
  • Kerr effect