Skip to main content
Log in

Circular Polarization Analyzer Based on the Combined Coaxial Archimedes’ Spiral Structure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have designed a novel plasmonic lens for the circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure which is composed of a Archimedes’ spiral slit (ASS) surrounded by coaxial Archimedes’ spiral gratings (ASG) on the both sides of the metal film. The designed structure is sensitive to polarization of the incident circularly polarized light, and it can realize the focusing effect under circular polarization illumination with specific handedness and defocusing effect under the other handed circular polarization illumination. This phenomenon of spin-dependent intensity distribution can be attributed to the presence of geometric phase effect of ASS. The simulated results show that the combination of the ASS and ASG has a higher efficiency and better performance than the traditional pure ASS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons smooth surfaces. Springer, Berlin Heidelberg

    Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13:6815–6820

    Article  Google Scholar 

  4. Zhan Q (2009) Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 1:1–57

    Article  CAS  Google Scholar 

  5. Moreno I, Davis JA, Ruiz I, Cottrell DM (2010) Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt Express 18:7173–7183

    Article  CAS  Google Scholar 

  6. Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930–933

    Article  CAS  Google Scholar 

  7. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  8. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:221103–221103

    Article  Google Scholar 

  9. Scheuer J, Orenstein M (1999) Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities. Science 285:230–233

    Article  CAS  Google Scholar 

  10. Kim H, Park J, Cho SW, Lee SY, Kang M, Lee B (2010) Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10:529–536

    Article  CAS  Google Scholar 

  11. Zilio P, Parisi G, Garoli D, Carli M, Romanato F (2014) Bilayer holey plasmonic vortex lenses for the far field transmission of pure orbital angular momentum light states. Opt Lett 39:4899–4902

    Article  Google Scholar 

  12. Gorodetski Y, Drezet A, Genet C, Ebbesen TW (2013) Generating far-field orbital angular momenta from near-field optical chirality. Phys Rev Lett 110:203906

    Article  Google Scholar 

  13. Zilio P, Mari E, Parisi G, Tamburini F, Romanato F (2012) Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses. Opt Lett 37:3234–3236

    Article  Google Scholar 

  14. Tsai WY, Huang JS, Huang CB (2014) Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett 14:547–552

    Article  CAS  Google Scholar 

  15. Xie L, Yang HL, Huang X, Li Z (2013) Multi-band circular polarizer using Archimedean spiral structure chiral metamaterial with zero and negative refractive index. Prog Electromagn Res 141:645–657

    Article  Google Scholar 

  16. Ma X, Huang C, Pu M, Hu C, Feng Q, Luo X (2012) Multi-band circular polarizer using planar spiral metamaterial structure. Opt Express 20:16050–16058

    Article  Google Scholar 

  17. Yang S, Chen W, Nelson RL, Zhan Q (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34:3047–3049

    Article  Google Scholar 

  18. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2010) Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett 10:2075–2079

    Article  CAS  Google Scholar 

  19. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2012) Hybrid spiral plasmonic lens: towards high efficiency miniature circular polarization analyzer. Opt Soc Am 20:26299–26307

    Google Scholar 

  20. Yanai A, Levy U (2009) Plasmonic focusing with a coaxial structure illuminated by radially polarized light. Opt Express 17:924–932

    Article  CAS  Google Scholar 

  21. Lee SY, Lee IM, Park J, Hwang CY, Lee B (2011) Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited]. Appl Opt 50:G104–G112

    Article  Google Scholar 

  22. Agrawal A, Cao H, Nahata A (2005) Time-domain analysis of enhanced transmission through a single subwavelength aperture. Opt Express 13:3535–3542

    Article  Google Scholar 

  23. Ohno T, Miyanishi S (2006) Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt Express 14:6285–6290

    Article  Google Scholar 

  24. Drezet A, Genet C, Laluet JY, Ebbesen TW (2008) Optical chirality without optical activity: how surface plasmons give a twist to light. Opt Express 16:12559–12570

    Article  Google Scholar 

  25. Bachman KA, Peltzer JJ, Flammer PD, Furtak TE, Collins RT, Hollingsworth RE (2012) Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt Express 20(2):1308–1319

    Article  CAS  Google Scholar 

  26. Palik ED (ed) (1998) Handbook of optical constants of solids (vol. 3). Academic press

  27. Gordon R, Brolo A (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports for this work from the Foundation of Hefei University of Technology of China (HFUT. 407-037026).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, Z., Li, R. et al. Circular Polarization Analyzer Based on the Combined Coaxial Archimedes’ Spiral Structure. Plasmonics 10, 1255–1261 (2015). https://doi.org/10.1007/s11468-015-9917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9917-2

Keywords

Navigation