Skip to main content
Log in

On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a D-shaped photonic crystal fibre-based surface plasmon resonance sensor considering graphene on silver for sensing of refractive index of analyte and thickness of biolayer. The different structural and material parameters associated with sensor have been optimised. Graphene not only helps in adsorption of biomolecules due to π-π stacking interaction but at the same time prevents oxidation of metal-like silver. Numerical simulation shows that amplitude sensitivity of the proposed structure for chemical analytes is 216 RIU−1 (refractive index unit) with a resolution of 4.6 × 10−5 RIU while the wavelength sensitivity of the proposed sensor is found to be as high as 3700 nm RIU−1 with resolution of 2.7 × 10−5 RIU. Further, the proposed sensor can also be used for the detection of biolayer thickness in both amplitude and wavelength interrogations. An amplitude sensitivity of 0.26 nm−1 with resolution of 39 pm and wavelength sensitivity of 2 nm nm−1 with resolution of 50 pm is achievable for the determination of biolayer thickness. The proposed structure is easy to use as there is no need of filling of voids, and the analytes can be placed easily on the flat surface of photonic crystal fibre (PCF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot J-P, Boukherroub R, Szunerits S (2011) Curr Opinion Solid State Mater Sci 15:208–224

    Article  CAS  Google Scholar 

  2. Oh G-Y, Lee T-K, Kim H-S, Kim DG, Choi Y-W (2012) Opt Exp 20:19067–19074

    Article  CAS  Google Scholar 

  3. Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J (2001) Sensors Actuators B Chem 74:100–105

    Article  CAS  Google Scholar 

  4. Homola J, Dostalek J, Chen SF, Rasooly A, Jiang S, Yee SS (2002) Int J Food Microbiol 75:61–69

    Article  CAS  Google Scholar 

  5. Kretchmann E, Raether ZH (1968) Z Naturforsch Phys Sci 23A:2135–2136

    Google Scholar 

  6. Wu L et al (2010) Opt Exp 18:14395–14399

    Article  CAS  Google Scholar 

  7. Maharana PK, Srivastava T, Jha R (2014) J Phys D Appl Phys 47:385102-1–385102-11

    Article  Google Scholar 

  8. Choi SH, Kim YL, Byun KM (2011) Opt Exp 19:458–466

    Article  CAS  Google Scholar 

  9. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320:1308

    Article  CAS  Google Scholar 

  10. Wu Z et al (2013) IEEE Sensors J 13:777–782

    Article  CAS  Google Scholar 

  11. Salihoglu O, Balci S, Kocabas C (2012) Appl Phys Lett 100:1–5

    Article  Google Scholar 

  12. Berry V (2013) Carbon 62:1–10

    Article  CAS  Google Scholar 

  13. Scott Bunch J, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Nano Lett 8:2458–2462

    Article  Google Scholar 

  14. Jha R, Badenes G (2009) Sensors Actuators A 150:212–221

    Article  CAS  Google Scholar 

  15. Verma R, Srivastava SK, Gupta BD (2012) IEEE Sensors J 12:3460–3466

    Article  CAS  Google Scholar 

  16. Kim JA, Hwang T, Reddy S, Dugasani, Amin R, Kulkarni A, Park SH, Kim T (2013) Sensors Actuators B Chem 187:426–433

    Article  CAS  Google Scholar 

  17. Perrotton C et al (2011) Opt Exp 19 A:1175–1183

    Article  Google Scholar 

  18. Chen C-H, Tsao T-C, Tang J-L, Wei-Te W (2010) Sensors 10:4794–4804

    Article  CAS  Google Scholar 

  19. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) IEEE J Quantum Electron 48:1403–1410

    Article  CAS  Google Scholar 

  20. Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y, Li C (2010) J Opt 12:1–4

    Article  Google Scholar 

  21. Dash JN, Jha R (2014) IEEE Photon Technol Lett 26:595–598

    Article  CAS  Google Scholar 

  22. Villatoro J, Kreuzer MP, Jha R, Minkovich VP, Finazzi V, Badenes G, Pruneri V (2009) Opt Exp 17:1447–1453

    Article  CAS  Google Scholar 

  23. Dash JN, Jha R (2014) IEEE Photon Technol Lett 26:1092–1095

    Article  CAS  Google Scholar 

  24. Ming T, Lu P, Chen L, Lv C, Liu D (2012) Opt Comm 285:1550–1554

    Article  Google Scholar 

  25. Kim HJ, Kown OJ, Lee SB, Han Y-G (2011) Appl Phys B 102:81–85

    Article  CAS  Google Scholar 

  26. Tan Z, Li X, Chen Y, Fan P (2013) Plasmonics. doi:10.1007/s11468-013-9609-8

    Google Scholar 

  27. Maharana PK, Srivastava T, Jha R (2013) IEEE Photon Technol Lett 25:122–125

    Article  CAS  Google Scholar 

  28. Hernandez FJ, Ozalp VC (2012) Biosensors 2:1–14

    Article  CAS  Google Scholar 

  29. Liang X, Fu Z, Chou SY (2007) Nano Lett 7:3840–3844

    Article  CAS  Google Scholar 

  30. Dappe YJ, Basanta MA, Flores F, Ortega J (2006) Phys Rev B 74:205434, 1–9

    Article  Google Scholar 

  31. Palik ED (1985) Academic Press, San Diego

  32. Bruna M, Borini S (2009) Appl Phy Lett 94:031901

    Article  Google Scholar 

  33. Mak KF, Sfeir MY, Misewich JA, Heinz TF (2010) PNAS 107:14999–15004

    Article  Google Scholar 

  34. Lo Y-L, Chuang C-H, Lin Z-W (2011) Opt Lett 36:2489–2491

    Article  Google Scholar 

  35. Ying D, Shu-Guang L, Shuo L (2012) Chin Phys B 21:1–6

    Google Scholar 

  36. Hassani A, Skorobogatiy M (2009) J Opt Soc Am B 26:1550–1557

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to IIT Bhubaneswar for providing financial and infrastructural support.

Compliance with Ethical Standards

The consent has been taken from the other author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, J.N., Jha, R. On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance. Plasmonics 10, 1123–1131 (2015). https://doi.org/10.1007/s11468-015-9912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9912-7

Keywords

Navigation