Advertisement

Plasmonics

, Volume 11, Issue 5, pp 1323–1329 | Cite as

Generation of In-Plane Light Beam with Orbital Angular Momentum with an Asymmetrical Plasmonic Waveguide

  • Wanwan Liu
  • Xin Hu
  • Lin Jin
  • Xinxin Fu
  • Qin ChenEmail author
Article

Abstract

Based on silicon plasmonic waveguide with asymmetrical metal and dielectric coatings, we show that in-plane light beam with orbital angular momentum (OAM) in its axis field component could be generated by forming a π/2 phase difference between two fundamental modes of the asymmetrical waveguide. At the same time, the transverse field components contain a spin angular momentum due to the polarization rotation in the asymmetrical waveguide. The whole structure is ultracompact with a footprint less than < 3 × 0.5 × 0.5 μm. The proposed method to generate OAM beam in a waveguide would be interesting for on-chip integrated optical tweezers, information processing, etc.

Keywords

Integrated optics devices Waveguides Surface plasmons Optical vortices 

Notes

Acknowledgments

This work is supported by the grants from the National Natural Science Foundation of China for Youths (No. 61405235 and No. 61574158), the Natural Science Foundation of Jiangsu Province for Youths (No. BK20130365), Suzhou Science and Technology Development Program Foundation (No. ZXG201425), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL 2013KF01).

References

  1. 1.
    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S (2013) Terabit-scale orbital angular momentum mode division multiplexing in fibers. Sci Rep 340:1545–1548Google Scholar
  2. 2.
    Simpson NB, Dholakia K, Allen L, Padgett MJ (1997) Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 22:52–54CrossRefGoogle Scholar
  3. 3.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRefGoogle Scholar
  4. 4.
    Nagali E, Sciarrino F, DeMartini F, Marrucci L, Piccirillo B, Karimi E, Santamato E (2009) Quantum information transfer from spin to orbital angular momentum of photons. Phys Rev Lett 103:013601–1-013601-4CrossRefGoogle Scholar
  5. 5.
    Liu K, Cheng YQ, Yang ZC, Wang HQ, Qin YL, Li X (2015) Orbital-angular-momentum-based electromagnetic vortex imaging. IEEE Antennas Wirel Propag Lett 14:711–714CrossRefGoogle Scholar
  6. 6.
    Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP (1992) Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45:8185–8189CrossRefGoogle Scholar
  7. 7.
    Li CF (2009) Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys Rev A 80:063814–1-063814-11Google Scholar
  8. 8.
    Van Enk SJ, Nienhuis G (1992) Eigenfunction description of laser beams and orbital angular momentum of light. Opt Commun 94:147–158CrossRefGoogle Scholar
  9. 9.
    Berry M (1998) Paraxial beams of spinning light. Proc SPIE 3487:6–11CrossRefGoogle Scholar
  10. 10.
    Born M, Wolf E (1980) Principles of optics. Elsevier Ltd, AmsterdamGoogle Scholar
  11. 11.
    Schemmel P, Pisano G, Maffei B (2014) Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths. Opt Express 22:14712–14726CrossRefGoogle Scholar
  12. 12.
    Fatema A, Hwa KY, Alexander B, Furlani EP (2014) Plasmon-Enhanced metasurfaces for controlling optical polarization. ACS Photonics 1:507–515CrossRefGoogle Scholar
  13. 13.
    Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd R W (2014) Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci& App 3:e167–e167CrossRefGoogle Scholar
  14. 14.
    Guo Y, Yan L, Pan W, Luo B (2015) Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces. Plasmonics1–8Google Scholar
  15. 15.
    Jin L, Chen Q, Wen L (2014) Mode-coupling polarization rotator based on plasmonic waveguide. Opt Lett 39:2798–2801CrossRefGoogle Scholar
  16. 16.
    Alonso-Ramons C, Halir R, Ortega-Moñux A, Cheben P, Vivien L, Molina-Fernández I, Marris-Morini D, Janz S, Xu DX, Schmid J (2013) A general approach for robust integrated polarization rotators. Proc SPIE 8781:878109–1-878109-8Google Scholar
  17. 17.
    Wang ZC, Dai DX (2008) Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B 25:747–753CrossRefGoogle Scholar
  18. 18.
    Cai XL, Wang JW, Strain MJ, Johnson-Morris B, Zhu JB, Sorel M, O’Brien JL, Thompson MG, Yu SY (2012) Integrated compact optical vortex beam emitters. Sci Rep 338:363–366Google Scholar
  19. 19.
    Zhang DK, Feng X, Huang YD (2012) Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip. Opt Express 20:26986–26995CrossRefGoogle Scholar
  20. 20.
    Su TH, Scott RP, Djordjevic SS, Fontaine NK, Geisler DJ, Cai XR, Yoo SJB (2012) Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt Express 20:9396–9402CrossRefGoogle Scholar
  21. 21.
    Zhang DK, Feng X, Cui KY, Liu F, Huang YD (2013) Generating in-plane optical orbital angular momentum beams with silicon waveguides. IEEE Photonic J 2201206-2201206:5Google Scholar
  22. 22.
    Liang Y, Wu HW, Huang BJ, Huang XG (2014) Light beams with selective angular momentum generated by hybrid plasmonic waveguides. Nano Commun 6:12360–12365Google Scholar
  23. 23.
    Jin L, Chen Q, Song SC (2013) Plasmonic waveguides with low polarization dependence. Opt Lett 38:3078–3081CrossRefGoogle Scholar
  24. 24.
    Palik ED (1985) Handbook of optical constants of solids. AcademicGoogle Scholar
  25. 25.
    Driscoll JB, Liu XP, Yasseri S, Hsieh I, Dadap JI, Osgood RM (2009) Large longitudinal electric fields (Ez) in silicon nanowire waveguides. Opt Express 17:2797–2804CrossRefGoogle Scholar
  26. 26.
    Zhan QW (2004) Trapping metallic Rayleigh particles with radial polarization. Opt Express 12:3377–3382CrossRefGoogle Scholar
  27. 27.
    Komatsu M, Saitoh K, Koshiba M (2012) Compact polarization rotator based on surface plasmon polariton with low insertion loss. IEEE Photonic J 4:707–714CrossRefGoogle Scholar
  28. 28.
    Gao LF, Huo YJ, Harris JS, Zhou ZP (2013) Ultra-Compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonic Tech L 25:2081– 2084CrossRefGoogle Scholar
  29. 29.
    Gao LF, Hu FF, Wang XJ, Tang LX, Zhou ZP (2013) Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic dielectric coupling. Appl Phys B 113:199–203CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wanwan Liu
    • 1
    • 2
  • Xin Hu
    • 1
  • Lin Jin
    • 1
  • Xinxin Fu
    • 1
  • Qin Chen
    • 1
    Email author
  1. 1.Key Lab of Nanodevices and Applications-CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences (CAS)SuzhouChina
  2. 2.Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhouChina

Personalised recommendations