Advertisement

Plasmonics

, Volume 11, Issue 5, pp 1307–1312 | Cite as

U-Shaped Photonic Crystal Fiber Based Surface Plasmon Resonance Sensors

  • Shu Ge
  • Fukun Shi
  • Guiyao ZhouEmail author
  • Songhao Liu
  • Zhiyun Hou
  • Lu Peng
Article

Abstract

A surface plasmon resonance sensor based on a U-shaped photonic crystal fiber with a rectangular lattice has been designed through finite element method. The U-shaped fiber exhibits not only stronger mechanical strength but also better sensor performance than our previous scheme. The upper detection limit extends to higher analyze refractive index, 1.384, for phase interrogation. We introduce a ratio to evaluate the impact of higher order plasmonic mode. For wavelength modulation scheme, the parameter to describe the performance of a sensor is chosen to be the figure of merit, which can be up to 533.8[RIU−1] around complete coupling condition.

Keywords

U-shaped Photonic crystal fiber Surface plasmon resonance Sensor 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.61377100 and 61575066) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20134407120014).

Compliance with Ethical Standards

We ensure this manuscript complies with the Committee on Publication Ethica (COPE) guidelines applicable for this journal. All authors in this manuscript have consented to submit it to the journal—Plasmonics—the authors whose names appear on the submission have contributed sufficiently to the scientific work and hence share collective responsibility and accountability for the results.

References

  1. 1.
    Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 216(4):398–410. doi: 10.1007/BF01391532 CrossRefGoogle Scholar
  2. 2.
    Kretschmann E, Raether H (2014) Notizen: radiative decay of non radiative surface plasmons excited by light. Z Naturforsch Teil A 23(12):2135–2136. doi: 10.1515/zna-1968-1247 Google Scholar
  3. 3.
    Goray LI, Seely JF (2002) Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements. Appl Opt 41(7):1434–1445. doi: 10.1364/AO.41.001434 CrossRefGoogle Scholar
  4. 4.
    Villuendas F, Pelayo J (1990) Optical fibre device for chemical seming based on surface plasmon excitridon. Sensors Actuators A Phys 23(1):1142–1145. doi: 10.1016/0924-4247(90)87104-Q CrossRefGoogle Scholar
  5. 5.
    De Maria L, Martinelli M, Vegetti G (1993) Fiber-optic sensor based on surface plasmon interrogation. Sensors Actuators B Chem 12(3):221–223. doi: 10.1016/0925-4005(93)80022-4 CrossRefGoogle Scholar
  6. 6.
    Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12(3):213–220. doi: 10.1016/0925-4005(93)80021-3 CrossRefGoogle Scholar
  7. 7.
    Mar M, Jorgenson R, Letellier S, Yee S (1993) In-situ characterization of multilayered langmuir-blodgett films using a surface plasmon resonance fiber optic sensor. Engineering in Medicine & Biology Society Proceedings of Annual International Conf. IEEE. 1551–1552. doi: 10.1109/IEMBS.1993.979277
  8. 8.
    Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle films. Nanotechnology 17(1):124. doi: 10.1088/0957-4484/17/1/020 CrossRefGoogle Scholar
  9. 9.
    Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. JOSA B 24(6):1423–1429. doi: 10.1364/JOSAB.24.001423 CrossRefGoogle Scholar
  10. 10.
    Yu X, Zhang Y, Pan S et al (2010) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt 12(1):015005. doi: 10.1088/2040-8978/12/1/015005 CrossRefGoogle Scholar
  11. 11.
    Shuai B, Xia L, Zhang Y et al (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20(6):5974–5986. doi: 10.1364/OE.20.005974 CrossRefGoogle Scholar
  12. 12.
    Otupiri R, Akowuah EK, Haxha S et al (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. Photon J IEEE 6(4):1–11. doi: 10.1109/JPHOT.2014.2335716 CrossRefGoogle Scholar
  13. 13.
    Schmidt MA, Sempere LP, Tyagi HK et al (2008) Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires. Phys Rev B 77(3):033417. doi: 10.1103/PhysRevB.77.033417 CrossRefGoogle Scholar
  14. 14.
    Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808. doi: 10.1364/OE.19.003799 CrossRefGoogle Scholar
  15. 15.
    Xue J, Li S, Xiao Y et al (2013) Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance. Opt Express 21(11):13733–13740. doi: 10.1364/OE.21.013733 CrossRefGoogle Scholar
  16. 16.
    Spittel R, Jäger M, Bartelt H (2012) Approximation of the effective refractive index of surface plasmons propagating along micron-sized gold wires in photonic crystal fibers. Proceedings of SPIE - The International Society for Optical Engineering. 84260U-84260U-9. doi: 10.1117/12.922589
  17. 17.
    Allsop T, Neal R, Dvorak M et al (2013) Physical characteristics of localized surface plasmons resulting from nano-scale structured multi-layer thin films deposited on D-shaped optical fiber. Opt Express 21(16):18765–18776. doi: 10.1364/OE.21.018765 CrossRefGoogle Scholar
  18. 18.
    Yan HT, Liu Q, Ming Y et al (2013) Metallic grating on a D-shaped fiber for refractive index sensing. Photon J IEEE 5(5):4800706. doi: 10.1109/JPHOT.2013.2284244 CrossRefGoogle Scholar
  19. 19.
    An G, Li S, Qin W et al (2014) High-sensitivity refractive index sensor based on d-shaped photonic crystal fiber with rectangular lattice and nano-scale gold film. Plasmonics 9(6):1355–1360. doi: 10.1007/s11468-014-9749-5 CrossRefGoogle Scholar
  20. 20.
    Wu WT, Jen CP, Tsao TC et al. (2009) U-shaped fiber optics fabricated with a femtosecond laser and integrated into a localized plasmon resonance biosensor. Design, Test, Integration & Packaging of MEMS/MOEMS, 2009. Symposium on. IEEE: 127–131Google Scholar
  21. 21.
    Shi F, Peng L, Zhou G et al (2015) An elliptical core D-shaped photonic crystal fiber-based plasmonic sensor at upper detection limit. Plasmonics 10(6):1263–1268. doi: 10.1007/s11468-015-9931-4 CrossRefGoogle Scholar
  22. 22.
    Sellmeier W (1871) Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. Ann Phys Chem 219(6):272–282. doi: 10.1002/andp.18712190612 CrossRefGoogle Scholar
  23. 23.
    Rioux D, Vallières S, Besner S et al (2014) An analytic model for the dielectric function of Au, Ag, and their alloys. Adv Opt Mater 2(2):176–182. doi: 10.1002/adom.201300457 CrossRefGoogle Scholar
  24. 24.
    Zhang Z, Shi Y, Bian B et al (2008) Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt Express 16(3):1915–1922. doi: 10.1364/OE.16.001915 CrossRefGoogle Scholar
  25. 25.
    Luan N, Wang R, Lv W et al (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582. doi: 10.1364/OE.23.008576 CrossRefGoogle Scholar
  26. 26.
    Sherry LJ, Chang SH, Schatz GC et al (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi: 10.1021/nl0515753 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shu Ge
    • 1
    • 2
  • Fukun Shi
    • 1
    • 2
  • Guiyao Zhou
    • 1
    • 2
    Email author
  • Songhao Liu
    • 1
    • 2
  • Zhiyun Hou
    • 1
    • 2
  • Lu Peng
    • 1
    • 2
  1. 1.Guangdong Province Key Laboratory of Nano-photonic Functional Materials and DevicesSouth China Normal UniversityGuangzhouChina
  2. 2.Specially Functional Fiber Engineering Technology Research Center of Guangdong Higher Education InstitutesGuangzhouChina

Personalised recommendations