, Volume 11, Issue 5, pp 1297–1304 | Cite as

Enhanced and Selective Photodetection Using Graphene-Stabilized Hybrid Plasmonic Silver Nanoparticles

  • Rishi Maiti
  • Tridib K. Sinha
  • Subhrajit Mukherjee
  • Basudam Adhikari
  • Samit K. RayEmail author


We report the fabrication and characteristics of a novel graphene-Ag0 hybrid plasmonic nanostructure-based photodetector exhibiting moderately high responsivity (∼28 mA/W) and spectral selectivity (∼510 nm) in the visible wavelength. The formation of highly stable Ag0 nanoparticles with an average size of 40 nm is observed within the graphene layers, resulting in n-type doping of hybrid material. The absorption peak of graphene-Ag0 hybrid is redshifted to the visible wavelength (∼510 nm) from the plasmonic Ag peak (∼380 nm) in agreement with the optical simulation results for embedded metal nanoparticles. The study demonstrates the synergistic effect of the graphene-metal nanocomposite, which appears attractive for applications in graphene-based photonic devices.


Graphene-metal hybrid Subwavelength optics Localized surface plasmon (LSP) Finite element method (FEM) Plasmon-enhanced photodetection 



This work is supported by the partial funding from CSIR-sponsored “GBH” and DST-ITPAR-sponsored “GPU” projects. The use of the XPS facility of the Department of Physics, IIT Kharagpur, is gratefully acknowledged.


  1. 1.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622CrossRefGoogle Scholar
  2. 2.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and opto-electronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  3. 3.
    Splendiani A, Sun L, Zhang YB, Li TS, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRefGoogle Scholar
  4. 4.
    Mukherjee S, Maiti R, Midya A, Das S, Ray SK (2015) ACS Photon 2:760CrossRefGoogle Scholar
  5. 5.
    Ozbay E (2006) Merging photonics and electronics at nanoscale dimensions. Science 311(5758):189CrossRefGoogle Scholar
  6. 6.
    Liang Z, Sun J, Jiang Y, Jiang L, Chen X (2014) Plasmonic enhanced optoelectronic devices. Plasmonics 9:859–866CrossRefGoogle Scholar
  7. 7.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4:1143CrossRefGoogle Scholar
  8. 8.
    Kneipp K, Wang Y, Kniepp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667CrossRefGoogle Scholar
  9. 9.
    Gogurla N, Sinha AK, Santra S, Manna S, Ray SK (2014) Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci Rep 4:6483CrossRefGoogle Scholar
  10. 10.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRefGoogle Scholar
  11. 11.
    Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930CrossRefGoogle Scholar
  12. 12.
    Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458CrossRefGoogle Scholar
  13. 13.
    Liu WL, Lin FC, Yang YC, Huang CH, Gwo S, Huang MH, Huang J (2013) The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 5:7953CrossRefGoogle Scholar
  14. 14.
    Liu Y, Cheng R, Liao L, Zhou H, Bai J, Liu G, Liu L, Huang Y, Duan XF (2011) Plasmon resonance enhanced multicolour photodetection by graphene. Nat Commun 2:579CrossRefGoogle Scholar
  15. 15.
    Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171CrossRefGoogle Scholar
  16. 16.
    Bennett H, Peck R, Burge D, Bennett J (1969) Formation and growth of tarnish on evaporated silver films. J Appl Phys 40:3351CrossRefGoogle Scholar
  17. 17.
    Elechiguerra JL, Larios-Lopez L, Liu C, Garcia-Gutierrez D, Camacho-Bragado A, Yacaman M (2005) Corrosion at the nanoscale: the case of silver nanowires and nanoparticles. J Chem Mater 17(24):6042–6052CrossRefGoogle Scholar
  18. 18.
    Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083CrossRefGoogle Scholar
  19. 19.
    Pastoriza-Santos I, Liz-Marzán LM (1999) Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir 15:948–951CrossRefGoogle Scholar
  20. 20.
    Lu L, Liu J, Hu Y, Zhang Y, Chen W (2013) Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv Mater 25:1270CrossRefGoogle Scholar
  21. 21.
    Muetteries EL, Bleeke JR, Wuchere EJ (1982) Structural, stereochemical, and electronic features of arene-metal complexes. Chem Rev 82:499CrossRefGoogle Scholar
  22. 22.
    Heimel G, Duhm S, Salzmann I, Gerlach A, Strozecka A, Niederhausen J, Bürker C, Hosokai T, FernandezTorrente I, Schulze Winkler GS, Wilke A, Schlesinger R, Frisch J, Bro¨ker B, Vollmer A, Detlefs B, Pflaum J, Kera S, Franke KJ, Ueno N, Pascual JI, Schreiber F, Koch N (2013) Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nat Chem 5:187CrossRefGoogle Scholar
  23. 23.
    Popov IA, Bozhenko KV, Boldyrev AI (2012) Nano Res 5:117CrossRefGoogle Scholar
  24. 24.
    Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352CrossRefGoogle Scholar
  25. 25.
    Malarda LM, Pimentaa MA, Dresselhausb G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51CrossRefGoogle Scholar
  26. 26.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235CrossRefGoogle Scholar
  27. 27.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoslov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210CrossRefGoogle Scholar
  28. 28.
    Shi Y, Dong X, Chen P, Wang J, Li L-J (2009) Effective doping of single-layer graphene from underlying SiO2 substrates. Phys Rev B 79:115402CrossRefGoogle Scholar
  29. 29.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  30. 30.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901CrossRefGoogle Scholar
  31. 31.
    Le Ru EC, Etchegoin PG (2008) Principals of surface enhanced Raman spectroscopy. ElsevierGoogle Scholar
  32. 32.
    Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett 9:1039–1044CrossRefGoogle Scholar
  33. 33.
    Maiti R, Manna S, Midya A, Ray SK (2013) Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions. Opt Express 21(22):26034–26043CrossRefGoogle Scholar
  34. 34.
    Matheu P, Lim SH, Derkacs D, McPheeters C, Yu ET (2008) Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett 93(11):113108CrossRefGoogle Scholar
  35. 35.
    Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704CrossRefGoogle Scholar
  36. 36.
    Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rishi Maiti
    • 1
  • Tridib K. Sinha
    • 2
  • Subhrajit Mukherjee
    • 3
  • Basudam Adhikari
    • 2
  • Samit K. Ray
    • 1
    Email author
  1. 1.Department of PhysicsIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Materials Science CenterIndian Institute of TechnologyKharagpurIndia
  3. 3.Advanced Technology Development CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations