, Volume 11, Issue 5, pp 1291–1296 | Cite as

A MIM Filter Based on a Side-Coupled Crossbeam Square-Ring Resonator

  • Shaowu Wang
  • Yan Li
  • Qijiao Xu
  • Shaohui LiEmail author


In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.


Surface plasmon polaritons MIM waveguide Filter 



The authors acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 11274219 and 11174304 and the Program of Research Foundation of Shantou University under Grant No. 08005.


  1. 1.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  2. 2.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring Resonators. Nature 440:04594CrossRefGoogle Scholar
  3. 3.
    Pendry JB, Martin-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305:847–848CrossRefGoogle Scholar
  4. 4.
    Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402CrossRefGoogle Scholar
  5. 5.
    Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759CrossRefGoogle Scholar
  6. 6.
    Daneshmandi O, Alighanbari A, Gharavi A (2015) Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings. Plasmonics 10:233–239CrossRefGoogle Scholar
  7. 7.
    Wahsheh RA, Lu Z, Abushagur MAG (2009) Nanoplasmonic directional couplers and Mach-Zehnder interferometers. Opt Commun 282:4622–4626CrossRefGoogle Scholar
  8. 8.
    Wu T, Liu Y, Yu Z, Peng Y, Shu C, He H (2014) The sensing characteristics of plasmonic waveguide with a single defect. Opt Commun 323:44–48CrossRefGoogle Scholar
  9. 9.
    Zhu JH, Huang XG, Tao J, Jin XP, Mei X (2012) Nanometeric plasmonic refractive index senor. Opt Commun 285:3242–3245CrossRefGoogle Scholar
  10. 10.
    Luo X, Zou X, Li X, Pan W, Luo B, Yan L (2014) Plasmonic filter using metal-insulator-metal waveguide with phase shifts and its transmission characteristics. Plasmonics 9:887–892CrossRefGoogle Scholar
  11. 11.
    Calva PA, Medina I (2014) Power breakdown threshold of a plasmonic waveguide filter. Plasmonics 9:561–564CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549CrossRefGoogle Scholar
  13. 13.
    Chen L, Lu P, Tian M, Liu D, Zhang J (2013) A subwavelength MIM waveguide filter with single-cavity and multi-cavity structures. Optik 124:3701–3704CrossRefGoogle Scholar
  14. 14.
    Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096CrossRefGoogle Scholar
  15. 15.
    Tian M, Lu P, Chen L, Lv C, Liu D (2011) A subwavelength MIM waveguide resonator with an outer portion smooth bend structure. Opt Commun 284:4078–4081CrossRefGoogle Scholar
  16. 16.
    Lu H, Liu X, Mao D, Wang L, Gong Y (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922CrossRefGoogle Scholar
  17. 17.
    Tao J, Huang XG, Lin X, ZhangQ JX (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multipleteeth-shaped structure. Opt Express 17:13989CrossRefGoogle Scholar
  18. 18.
    Zhai X, Wang L, Wang LL, Li XF, Huang WQ, Wen SC, Fan DY (2013) Tuning bandgap of a double-tooth-shaped MIM waveguide filter by control widths of the teeth. J Opt 15:055008CrossRefGoogle Scholar
  19. 19.
    Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16:16314CrossRefGoogle Scholar
  20. 20.
    Liu J, Fang G, Zhao H, Zhang Y, Liu S (2010) Plasmon flow control at gap waveguide junctions using square ring resonators. Appl Phys 43:055103Google Scholar
  21. 21.
    Peng X, Li H, Wu C, Cao G, Liu Z (2013) Research on transmission characteristics of aperture-coupled square-ring resonator based filter. Opt Commun 294:368–371CrossRefGoogle Scholar
  22. 22.
    Hosseini A, Massouda Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102CrossRefGoogle Scholar
  23. 23.
    Zand I, Mahigir A, Pakizeh T, Abrishamian MS (2012) Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators. Opt Express 20:7516–7524CrossRefGoogle Scholar
  24. 24.
    Zand I, Abrishamian MS, Berini P (2013) Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs). Opt Express 21:79–86CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsShantou UniversityShantouChina

Personalised recommendations