, Volume 11, Issue 5, pp 1285–1290 | Cite as

Terahertz Tunable Metasurface Lens Based on Vanadium Dioxide Phase Transition

  • Jingwen He
  • Zhenwei Xie
  • Wenfeng Sun
  • Xinke Wang
  • Yanda Ji
  • Sen Wang
  • Yuan Lin
  • Yan ZhangEmail author


Based on the insulator-to-metal phase transition of vanadium dioxide (VO 2), a terahertz (THz) tunable metasurface lens (TML), which consists of a THz metasurface lens and a VO 2 film on Al 2 O 3 substrate, is proposed and experimentally verified. The focal intensity of the TML can be thermally controlled. The changes of the cross-polarized amplitude spectrum and the focal intensity during the heating and cooling processes are also investigated in detail. Any desired focal intensity can be obtained by adjusting the TML temperature. This TML and its approach will be of great significance for the development of the THz active devices.


Tunable metasurface lens Vanadium dioxide Terahertz 



This work was supported by the 973 Program of China (No. 2013CBA01702), the National Natural Science Foundation of China (No. 61205097, 11374216, 91233202, 11204188, 11174211, and 11474206), the National High Technology Research and Development Program of China (No. 2012AA101608-6), the Beijing Natural Science Foundation (No. 1132011), the Program for New Century Excellent Talents in University (NCET-12-0607), the Program for Beijing Excellent Talents (No. 2013D005016000008), the CAEP THz Science and Technology Foundation, the Beijing youth top-notch talent training plan (CIT&TCD201504080) and the Scientific Research Base Development Program of the Beijing Municipal Commission of Education.


  1. 1.
    Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DA, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340(6138):1304–1307CrossRefGoogle Scholar
  2. 2.
    Cong L, Xu N, Gu J, Singh R, Han J, Zhang W (2014) Highly flexible broadband terahertz metamaterial quarter-wave plate. Laser & Photonics Rev 8(4):626–632CrossRefGoogle Scholar
  3. 3.
    He J, Wang X, Hu D, Ye J, Feng S, Kan Q, Zhang Y (2013) Generation and evolution of the terahertz vortex beam. Opt Express 21(17):20230–20239CrossRefGoogle Scholar
  4. 4.
    Hu D, Wang X, Feng S, Ye J, Sun W, Kan Q, Klar PJ, Zhang Y (2013) Ultrathin terahertz planar elements. Adv Opt Mater 1(2):186–191CrossRefGoogle Scholar
  5. 5.
    Chen HT, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600CrossRefGoogle Scholar
  6. 6.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634CrossRefGoogle Scholar
  7. 7.
    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, Garcła de Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7(3):2388–2395CrossRefGoogle Scholar
  8. 8.
    Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813CrossRefGoogle Scholar
  9. 9.
    Gao W, Shu J, Reichel K, Nickel DV, He X, Shi G, Vajtai R, Ajayan PM, Kono J, Mittleman DM, Xu Q (2014) High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures, vol 14, pp 1242–1248Google Scholar
  10. 10.
    Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F (2012) Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett 12(7):3766–3771CrossRefGoogle Scholar
  11. 11.
    Shen NH, Massaouti M, Gokkavas M, Manceau JM, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis CM (2011) Optically implemented broadband blueshift switch in the terahertz regime. Phys Rev Lett 106(3):037403CrossRefGoogle Scholar
  12. 12.
    Kafesaki M, Shen NH, Tzortzakis S, Soukoulis CM (2012) Optically switchable and tunable terahertz metamaterials through photoconductivity. J Opt 14(11):114008CrossRefGoogle Scholar
  13. 13.
    Zhou J, Chowdhury DR, Zhao R, Azad AK, Chen HT, Soukoulis CM, Taylor AJ, O’Hara JF (2012) Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B 86(3):035448CrossRefGoogle Scholar
  14. 14.
    Gu JQ, Singh R, Azad AK, Han JG, Taylor AJ, O’Hara JF, Zhang WL (2012) An active hybrid plasmonic metamaterial. Opt Mater Express 2(1):31–37CrossRefGoogle Scholar
  15. 15.
    Xie Z, He J, Wang X, Feng S, Zhang Y (2015) Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers. Opt Lett 40(3):359–362CrossRefGoogle Scholar
  16. 16.
    Seo M, Kyoung J, Park H, Koo S, Kim HS, Bernien H, Kim BJ, Choe JH, Ahn YH, Kim HT, Park N, Park QH, Ahn K, Kim DS (2010) Active terahertz nanoantennas based on VO 2 phase transition. Nano Lett 10(6):2064–2068CrossRefGoogle Scholar
  17. 17.
    Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11(11):4383–4395CrossRefGoogle Scholar
  18. 18.
    Sharma Y, Tiruveedhula VA, Muth JF, Dhawan A (2015) VO2 based waveguide-mode plasmonic nano-gratings for optical switching. Opt Express 23(5):5822–5849CrossRefGoogle Scholar
  19. 19.
    Fan F, Gu WH, Chen S, Wang XH, Chang SJ (2013) State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. Opt Lett 38(9): 1582–1584CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Qiao S, Sun L, Shi QW, Huang W, Li L, Yang Z (2014) Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method. Opt Express 22(9):11070–11078CrossRefGoogle Scholar
  21. 21.
    Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu J, Wolf SA, Omenetto FG, Zhang X, Nelson KA, Averitt RD (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487(7407): 345–348CrossRefGoogle Scholar
  22. 22.
    Wen QY, Zhang HW, Yang QH, Xie YS, Chen K, Liu YL (2010) Terahertz metamaterials with VO 2 cut-wires for thermal tunability. Appl Phys Lett 97(2):021111CrossRefGoogle Scholar
  23. 23.
    Son TV, Ba COF, Valle R, Hach A (2014) Nanometer-thick flat lens with adjustable focus. Appl Phys Lett 105(23):231120CrossRefGoogle Scholar
  24. 24.
    Son TV, Zongo K, Ba C, Beydaghyan G, Hach A (2014) Pure optical phase control with vanadium dioxide thin films. Opt Commun 320:151–155CrossRefGoogle Scholar
  25. 25.
    Jostmeier T, Zimmer J, Karl H, Krenner HJ, Betz M (2014) Optically imprinted reconfigurable photonic elements in a VO 2 nanocomposite. Appl Phys Lett 105(7):071107CrossRefGoogle Scholar
  26. 26.
    Wang X, Cui Y, Sun W, Ye J, Zhang Y (2010) Terahertz polarization real-time imaging based on balanced electro-optic detection. J Opt Soc Am A 27(11):2387–2393CrossRefGoogle Scholar
  27. 27.
    Wang X, Cui Y, Sun W, Ye J, Zhang Y (2010) Terahertz real-time imaging with balanced electro-optic detection. Opt Commun 283(23):4626–4632CrossRefGoogle Scholar
  28. 28.
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333–337CrossRefGoogle Scholar
  29. 29.
    Stroud D (1975) Generalized effective-medium approach to the conductivity of an inhomogeneous material. Phys Rev B 12(8):3368–3373CrossRefGoogle Scholar
  30. 30.
    Jepsen PU, Fischer BM, Thoman A, Helm H, Suh JY, Lopez R, Haglund RF (2006) Metal-insulator phase transition in a VO 2 thin film observed with terahertz spectroscopy. Phys Rev B 74(20):205103CrossRefGoogle Scholar
  31. 31.
    Kyoung J, Seo M, Park H, Koo S, Kim HS, Park Y, Kim BJ, Ahn K, Park N, Kim HT, Kim D (2010) Giant nonlinear response of terahertz nanoresonators on VO 2 thin film. Opt Express 18(16):16452–16459CrossRefGoogle Scholar
  32. 32.
    Hilton DJ, Prasankumar RP, Fourmaux S, Cavalleri A, Brassard D, El Khakani MA, Kieffer JC, Taylor AJ, Averitt RD (2007) Enhanced photosusceptibility near T c for the light-induced insulator-to-metal phase transition in vanadium dioxide. Phys Rev Lett 99(22):226401CrossRefGoogle Scholar
  33. 33.
    He J, Xie Z, Wang S, Wang X, Kan Q, Zhang Y (2015) Terahertz polarization modulator based on metasurface. J Opt 17(10):105107CrossRefGoogle Scholar
  34. 34.
    Choi HS, Ahn JS, Jung JH, Noh TW, Kim DH (1996) Mid-infrared properties of a VO 2 film near the metal-insulator transition. Phys Rev B 54(7):4621–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jingwen He
    • 1
    • 2
  • Zhenwei Xie
    • 1
    • 2
  • Wenfeng Sun
    • 2
  • Xinke Wang
    • 2
  • Yanda Ji
    • 3
  • Sen Wang
    • 1
    • 2
  • Yuan Lin
    • 3
  • Yan Zhang
    • 1
    • 2
    Email author
  1. 1.Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.Department of PhysicsCapital Normal University, Beijing Key Lab for Metamaterials and Devices, and Key Laboratory of Terahertz Optoelectronics, Ministry of EducationBeijingChina
  3. 3.State Key Laboratory of Electronic Thin films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations