Skip to main content

Direct Electrodeposition of Hollowed Ag Nanostructures on ITO Glass for Reproducible SERS Application

Abstract

Hollowed Ag nanostructures are, for the first time, electrodeposited on ITO glass without use of surfactant. The hollowed Ag nanostructure was investigated via a collaboration of scanning electron microscopy (SEM), XRD, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), XRD, and UV-vis. Results exhibited that the formation of the hollowed Ag nanostructure can be interpreted as the synergy effect of twin defect and low nucleation driving force. Surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G and adenine molecules adsorbed on the surface of these Ag nanostructures were recorded. The smallest RSD of 1651 cm−1 Raman bands of rhodamine 6G was 14.7 %, indicating that the hollowed Ag nanostructures can be utilized for reproducible SERS application. Through comparison, it was found the good crystallinity was beneficial for SERS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hutter E, Fendler JH (2004) Adv Mater 16:1685

    CAS  Article  Google Scholar 

  2. 2.

    Jain PK, El-Sayed MA (2010) Chem Phys Lett 487:153

    CAS  Article  Google Scholar 

  3. 3.

    Zayats AV, Smolyaninov II (2003) J Opt A Pure Appl Opt 5:S16

    CAS  Article  Google Scholar 

  4. 4.

    Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323

    CAS  Article  Google Scholar 

  5. 5.

    Moskovits MJ (2005) J Raman Spectrosc 36:485

    CAS  Article  Google Scholar 

  6. 6.

    Fang Y, Seong N, Dlott DD (2008) Science 321:388

    CAS  Article  Google Scholar 

  7. 7.

    Nie S, Emory SR (1997) Science 275:1102

    CAS  Article  Google Scholar 

  8. 8.

    Dieringer JA, Lettan RB II, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129:16249

    CAS  Article  Google Scholar 

  9. 9.

    Horimoto N, Ishikawa N, Nakajima A (2005) Chem Phys Lett 413:78

    CAS  Article  Google Scholar 

  10. 10.

    Kneipp K, Kneipp H, Kneipp J (2006) Acc Chem Res 39:4430

    Article  Google Scholar 

  11. 11.

    Wiley B, Sun Y, Xia Y (2007) Acc Chem Res 40:1067

    CAS  Article  Google Scholar 

  12. 12.

    Bae Y, Kim NH, Kim M, Lee KY, Han SW (2008) J Am Chem Soc 130:5432

    CAS  Article  Google Scholar 

  13. 13.

    Jana NR, Pal T (2007) Adv Mater 19:1761

    CAS  Article  Google Scholar 

  14. 14.

    Caswell KK, Bender CM, Murphy CJ (2003) Nano Lett 3:667

    CAS  Article  Google Scholar 

  15. 15.

    Lu L, Kobayashi A, Tawa K, Ozaki Y (2006) Chem Mater 18:4894

    CAS  Article  Google Scholar 

  16. 16.

    Zhang M, Zhao A, Guo H, Wang D, Gan Z, Sun H, Li D, Li M (2011) CrystEngComm 13:5709

    CAS  Article  Google Scholar 

  17. 17.

    Wang Y, Camargo PHC, Skrabalak SE, Gu H, Xia Y (2008) Langmuir 24:12042

    CAS  Article  Google Scholar 

  18. 18.

    Fan L, Guo R (2008) Cryst Growth Des 8:2150

    CAS  Article  Google Scholar 

  19. 19.

    Jena BK, Mishra BK, Bohidar S (2009) J Phys Chem C 113:14753

    CAS  Article  Google Scholar 

  20. 20.

    Han Y, Liu S, Han M, Bao J, Dai Z (2009) Cryst Growth Des 9:3941

    CAS  Article  Google Scholar 

  21. 21.

    Bian J, Li Z, Chen Z, Zhang X, Li Q, Jiang S, He J, Han G (2011) Electrochim Acta 67:12

    Article  Google Scholar 

  22. 22.

    Zhou G, Lu M, Yang Z, Zhang H, Zhoua Y, Wang S, Wang S, Zhang A (2006) J Cryst Growth 289:255

    CAS  Article  Google Scholar 

  23. 23.

    Bian J, Chen Z, Li Z, Yang F, He H, Wang J, Tan JZY, Zeng J, Peng R, Zhang X, Han G (2012) Appl Surf Sci 258:6632

    CAS  Article  Google Scholar 

  24. 24.

    Wen X, Xi Z, Jiao X, Yu W, Xue G, Zhang D, Lu Y, Wang P, Blair S, Ming H (2011) Plasmonics 8:225

    Article  Google Scholar 

  25. 25.

    Yi M, Zhang D, Wang P, Jiao X, Blair S, Wen X, Fu Q, Lu Y, Ming H (2011) Plasmonics 6:515

    CAS  Article  Google Scholar 

  26. 26.

    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Nano Lett 5:1569

    CAS  Article  Google Scholar 

  27. 27.

    Fang J, Hahn H, Krupke R, Schramm F, Scherer T, Dinga B, Song X (2009) Chem Commun 1130

  28. 28.

    Staleva H, Skrabalak SE, Carey CR, Kosel T, Xia Y, Hartland GV (2009) Phys Chem Chem Phys 11:5889

    CAS  Article  Google Scholar 

  29. 29.

    Zhang W, Liu Y, Cao R, Li Z, Zhang Y, Tang Y, Fan K (2008) J Am Chem Soc 130:15581

    CAS  Article  Google Scholar 

  30. 30.

    Pieczonka NPW, Goulet PJG, Aroca RF (2006) J Am Chem Soc 128:12626

    CAS  Article  Google Scholar 

  31. 31.

    Bian J, Li Z, Chen Z, He H, Zhang X, Li X, Han G (2011) Appl Surf Sci 258:1831

    CAS  Article  Google Scholar 

  32. 32.

    Evanoff DD Jr, Chumanov G (2004) J Phys Chem B 108:13957

    CAS  Article  Google Scholar 

  33. 33.

    Lee SJ, Kim K (2003) Chem Commun 212

  34. 34.

    Hildebrandt P, Stockburge M (1984) J Phys Chem 88:5935

    CAS  Article  Google Scholar 

  35. 35.

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Phys Rev Lett 95:257403

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) “2007CB613403” and Foundation of the scientific research base development (Engineering Research Center of the Education Ministry for the Surface and Structure Modification of Inorganic functional Materials) “KYJD09014.” The authors also thank for the financial support from the UoN-ZJU partnership grant joint project (9201030000106001) and Key Science and Technology Innovation Team of Zhejiang Province (2010R50013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiwen Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Bian, J., Huang, Z. et al. Direct Electrodeposition of Hollowed Ag Nanostructures on ITO Glass for Reproducible SERS Application. Plasmonics 11, 1279–1283 (2016). https://doi.org/10.1007/s11468-015-0172-3

Download citation

Keywords

  • Hollowed Ag nanostructure
  • Twin defect
  • Electrodeposition
  • SERS
  • Reproducibility