, Volume 11, Issue 5, pp 1279–1283 | Cite as

Direct Electrodeposition of Hollowed Ag Nanostructures on ITO Glass for Reproducible SERS Application

  • Xudong Cheng
  • Juncao Bian
  • Zhengfeng Huang
  • Zhaoguo Zhang
  • Peimei Dong
  • Qingli Wang
  • Yi Chen
  • Yanzhao Zhang
  • Xiwen ZhangEmail author


Hollowed Ag nanostructures are, for the first time, electrodeposited on ITO glass without use of surfactant. The hollowed Ag nanostructure was investigated via a collaboration of scanning electron microscopy (SEM), XRD, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), XRD, and UV-vis. Results exhibited that the formation of the hollowed Ag nanostructure can be interpreted as the synergy effect of twin defect and low nucleation driving force. Surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G and adenine molecules adsorbed on the surface of these Ag nanostructures were recorded. The smallest RSD of 1651 cm−1 Raman bands of rhodamine 6G was 14.7 %, indicating that the hollowed Ag nanostructures can be utilized for reproducible SERS application. Through comparison, it was found the good crystallinity was beneficial for SERS.


Hollowed Ag nanostructure Twin defect Electrodeposition SERS Reproducibility 



This work was supported by the National Basic Research Program of China (973 Program) “2007CB613403” and Foundation of the scientific research base development (Engineering Research Center of the Education Ministry for the Surface and Structure Modification of Inorganic functional Materials) “KYJD09014.” The authors also thank for the financial support from the UoN-ZJU partnership grant joint project (9201030000106001) and Key Science and Technology Innovation Team of Zhejiang Province (2010R50013).


  1. 1.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  2. 2.
    Jain PK, El-Sayed MA (2010) Chem Phys Lett 487:153CrossRefGoogle Scholar
  3. 3.
    Zayats AV, Smolyaninov II (2003) J Opt A Pure Appl Opt 5:S16CrossRefGoogle Scholar
  4. 4.
    Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323CrossRefGoogle Scholar
  5. 5.
    Moskovits MJ (2005) J Raman Spectrosc 36:485CrossRefGoogle Scholar
  6. 6.
    Fang Y, Seong N, Dlott DD (2008) Science 321:388CrossRefGoogle Scholar
  7. 7.
    Nie S, Emory SR (1997) Science 275:1102CrossRefGoogle Scholar
  8. 8.
    Dieringer JA, Lettan RB II, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129:16249CrossRefGoogle Scholar
  9. 9.
    Horimoto N, Ishikawa N, Nakajima A (2005) Chem Phys Lett 413:78CrossRefGoogle Scholar
  10. 10.
    Kneipp K, Kneipp H, Kneipp J (2006) Acc Chem Res 39:4430CrossRefGoogle Scholar
  11. 11.
    Wiley B, Sun Y, Xia Y (2007) Acc Chem Res 40:1067CrossRefGoogle Scholar
  12. 12.
    Bae Y, Kim NH, Kim M, Lee KY, Han SW (2008) J Am Chem Soc 130:5432CrossRefGoogle Scholar
  13. 13.
    Jana NR, Pal T (2007) Adv Mater 19:1761CrossRefGoogle Scholar
  14. 14.
    Caswell KK, Bender CM, Murphy CJ (2003) Nano Lett 3:667CrossRefGoogle Scholar
  15. 15.
    Lu L, Kobayashi A, Tawa K, Ozaki Y (2006) Chem Mater 18:4894CrossRefGoogle Scholar
  16. 16.
    Zhang M, Zhao A, Guo H, Wang D, Gan Z, Sun H, Li D, Li M (2011) CrystEngComm 13:5709CrossRefGoogle Scholar
  17. 17.
    Wang Y, Camargo PHC, Skrabalak SE, Gu H, Xia Y (2008) Langmuir 24:12042CrossRefGoogle Scholar
  18. 18.
    Fan L, Guo R (2008) Cryst Growth Des 8:2150CrossRefGoogle Scholar
  19. 19.
    Jena BK, Mishra BK, Bohidar S (2009) J Phys Chem C 113:14753CrossRefGoogle Scholar
  20. 20.
    Han Y, Liu S, Han M, Bao J, Dai Z (2009) Cryst Growth Des 9:3941CrossRefGoogle Scholar
  21. 21.
    Bian J, Li Z, Chen Z, Zhang X, Li Q, Jiang S, He J, Han G (2011) Electrochim Acta 67:12CrossRefGoogle Scholar
  22. 22.
    Zhou G, Lu M, Yang Z, Zhang H, Zhoua Y, Wang S, Wang S, Zhang A (2006) J Cryst Growth 289:255CrossRefGoogle Scholar
  23. 23.
    Bian J, Chen Z, Li Z, Yang F, He H, Wang J, Tan JZY, Zeng J, Peng R, Zhang X, Han G (2012) Appl Surf Sci 258:6632CrossRefGoogle Scholar
  24. 24.
    Wen X, Xi Z, Jiao X, Yu W, Xue G, Zhang D, Lu Y, Wang P, Blair S, Ming H (2011) Plasmonics 8:225CrossRefGoogle Scholar
  25. 25.
    Yi M, Zhang D, Wang P, Jiao X, Blair S, Wen X, Fu Q, Lu Y, Ming H (2011) Plasmonics 6:515CrossRefGoogle Scholar
  26. 26.
    Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Nano Lett 5:1569CrossRefGoogle Scholar
  27. 27.
    Fang J, Hahn H, Krupke R, Schramm F, Scherer T, Dinga B, Song X (2009) Chem Commun 1130Google Scholar
  28. 28.
    Staleva H, Skrabalak SE, Carey CR, Kosel T, Xia Y, Hartland GV (2009) Phys Chem Chem Phys 11:5889CrossRefGoogle Scholar
  29. 29.
    Zhang W, Liu Y, Cao R, Li Z, Zhang Y, Tang Y, Fan K (2008) J Am Chem Soc 130:15581CrossRefGoogle Scholar
  30. 30.
    Pieczonka NPW, Goulet PJG, Aroca RF (2006) J Am Chem Soc 128:12626CrossRefGoogle Scholar
  31. 31.
    Bian J, Li Z, Chen Z, He H, Zhang X, Li X, Han G (2011) Appl Surf Sci 258:1831CrossRefGoogle Scholar
  32. 32.
    Evanoff DD Jr, Chumanov G (2004) J Phys Chem B 108:13957CrossRefGoogle Scholar
  33. 33.
    Lee SJ, Kim K (2003) Chem Commun 212Google Scholar
  34. 34.
    Hildebrandt P, Stockburge M (1984) J Phys Chem 88:5935CrossRefGoogle Scholar
  35. 35.
    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Phys Rev Lett 95:257403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xudong Cheng
    • 1
  • Juncao Bian
    • 1
  • Zhengfeng Huang
    • 1
  • Zhaoguo Zhang
    • 1
  • Peimei Dong
    • 1
  • Qingli Wang
    • 1
  • Yi Chen
    • 1
  • Yanzhao Zhang
    • 1
  • Xiwen Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Silicon Materials and Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations