Advertisement

Plasmonics

, Volume 11, Issue 5, pp 1273–1277 | Cite as

Tuning of Light Trapping and Surface Plasmon Resonance in Silver Nanoparticles/c-Si Structures for Solar Cells

  • L. ManaiEmail author
  • B. Dridi Rezgui
  • R. Benabderrahmane Zaghouani
  • D. Barakel
  • P. Torchio
  • O. Palais
  • B. Bessais
Article

Abstract

In this work, we investigate silver (Ag) nanoparticle-related plasmonic effect on light absorption in Si substrate. Ag nanoparticles (Ag-NPs) deposited on top of Si were used to capture and couple incident light into these structures by forward scattering. We demonstrate that we can control nanoparticle size and shape while varying deposition time and annealing parameters. By the increase of the total time of the reaction process, morphology of Ag-NPs evolutes affecting the number and the width of surface plasmon resonance peaks, whereas for changed annealing parameters (temperature and time), the effect is more pronounced on the broadening and the position of peaks. Specific morphology of Ag-NPs can exhibit an interesting enhancement of optical properties which enables plasmon-related application in photovoltaic solar cells.

Keywords

Plasmonics Light trapping Silver nanoparticles Silicon solar cells 

References

  1. 1.
    Pillai S, Catchpole KR, Trupke T, Green M (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  2. 2.
    Atwater HA, Polman A (2010) Plasmonics for improved photovol- taic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  3. 3.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800CrossRefGoogle Scholar
  4. 4.
    Tsai FJ, Wang JY, Huang JJ, Kiang YW, Yang CC (2010) Absorption enhancement of an amourphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Opt Express 18:207–220CrossRefGoogle Scholar
  5. 5.
    Le KQ, Bienstman P (2010) Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes. Plasmonics 26:331–337Google Scholar
  6. 6.
    Beck FJ, Verhagen E, Mokkapati S, Polman A, Catchpole KR (2011) Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express 19:146–156CrossRefGoogle Scholar
  7. 7.
    Schmid M, Andrae P, Manley P (2014) Plasmonic and photonic scattering and near fields of nanoparticles. Nanoscale Res Lett 9:50CrossRefGoogle Scholar
  8. 8.
    Catchpole KR, Polman A (2008) Design principles for particles enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  9. 9.
    Stuart HR, Hall DG (1998) Island size effects in nanoparticles enhanced photodetectors. Appl Phys Lett 73:3815CrossRefGoogle Scholar
  10. 10.
    Schadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar
  11. 11.
    Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A (2011) Optical impedance matching using coupled plasmonic nanoparticles arrays. Nano Lett 11:1760–1765CrossRefGoogle Scholar
  12. 12.
    Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782CrossRefGoogle Scholar
  13. 13.
    West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808CrossRefGoogle Scholar
  14. 14.
    Benabderrahmane Zaghouani R, Manai L, Dridi Rezgui B, Bessais B (2015) Study of silver nanparticles electroless growth and their impact on silicon properties. Chem J 1:90–94Google Scholar
  15. 15.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  16. 16.
    Horcas I, Fernándes R, Gómez-Rodriguez JM, Colchero J, Gómez-Herrero J, Baró AM (2007) A WSXM: a software for scanning probe microscopy and tool for nanotechnology. Rev Sci Instrum 78:013705CrossRefGoogle Scholar
  17. 17.
    Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (2014) Handbook of nanomaterials properties. Springer, USACrossRefGoogle Scholar
  18. 18.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, BerlinGoogle Scholar
  19. 19.
    Meier M, Wokaun A (1983) Enhanced field of large metal particles: dynamic depolarization. Opt Lett 8:11CrossRefGoogle Scholar
  20. 20.
    Maier SA (2007) Plasmonics: fundamental and applications. Springer, USAGoogle Scholar
  21. 21.
    Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15:035005CrossRefGoogle Scholar
  22. 22.
    Su KH, Wei QH, Zhang X (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  23. 23.
    Burrows CP, Barnes WL (2010) Large spectral extinction due to overlap of dipolar and quadrupolar modes of metallic nanoparticles in arrays. Opt Express 18:3187–3198CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. Manai
    • 1
    Email author
  • B. Dridi Rezgui
    • 1
  • R. Benabderrahmane Zaghouani
    • 1
  • D. Barakel
    • 2
  • P. Torchio
    • 2
  • O. Palais
    • 2
  • B. Bessais
    • 1
  1. 1.Photovoltaic Laboratory, Research and Technology Center of EnergyUniversity of Tunis El ManarHammam-LifTunisia
  2. 2.Institut Matériaux Microélectronique Nanosciences de Provence-IM2NPAix Marseille Université, CNRS-UMR 7334, Domaine Universitaire de Saint JérômeMarseilleFrance

Personalised recommendations