Skip to main content

Advertisement

Log in

Förster Resonance Energy Transfer Between Molecules in the Vicinity of Graphene-Coated Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The recent demonstration of the plasmonic-enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g., core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNPs, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics are further expanded by the closely spaced multipolar plasmon resonances of the GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For an interesting comment on graphene versus metal plasmonics, see [22].

  2. Note that Gaussian units have been used in this reference, and we have adopted the same unit system in the present work. The corresponding result for Eq. (3) in SI units can be found from Ref. [23]. Note also that all the numerical results obtained in this paper are independent of the unit system used in the theory.

  3. For a comment on the possible dependence on other factors such as the apparent quantum yield of the donor, see the paper by Chang et al. cited in Ref. [14].

  4. See also the paper by Xie et al. in Ref. [12].

References

  1. Förster T (1948) Ann Phys 437:55–75

    Article  Google Scholar 

  2. Förster T (1959) Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  3. Gersten JI, Nitzan A (1984) Chem Phys Lett 104:31–37

    Article  CAS  Google Scholar 

  4. Hua XM, Gersten JI, Nitzan A (1985) J Chem Phys 83:3650–3659

    Article  CAS  Google Scholar 

  5. Andrew P, Barnes WL (2000) Science 290:785

    Article  CAS  Google Scholar 

  6. Andrew P, Barnes WL (2004) Science 306:1002–1005

    Article  CAS  Google Scholar 

  7. Malicka J, Gryczynski I, Fang J, Kuśba J, Lakowicz JR (2003) Annal Biochem 315:160–169

  8. Lakowicz JR, Kuśba J, Shen Y, Malicka J, D’Auria S, Gryczynski Z, Gryczynski I (2003) J Fluoresc 13:69–77

  9. Zhang J, Fu Y, Lakowicz JR (2007) J Phys Chem C 111:50–56

  10. Zhang J et al (2007) J Phys Chem C 111:11784–11792

    Article  CAS  Google Scholar 

  11. Gersten JI (2007) Plasmonics 2:65–77

    Article  CAS  Google Scholar 

  12. Xie HY, Chung HY, Leung PT, Tsai DP (2009) Phys Rev B 80:155448

    Article  Google Scholar 

  13. Chung HY, Leung PT, Tsai DP (2010) Plasmonics 5:363–368

    Article  Google Scholar 

  14. Chang R, Leung PT, Tsai DP (2014) Opt Express 22:27451–27461

    Article  Google Scholar 

  15. Marocico CA, Knoester J (2011) Phys Rev A 84:053824

    Article  Google Scholar 

  16. Gonzaga-Galeana JA, Zurita-Sanchez JR (2013) J Chem Phys 139:244302

    Article  Google Scholar 

  17. Xiong L, Shuhendler AJ, Rao J (2012) Nat Commun 3:1193

    Article  Google Scholar 

  18. Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  19. Garcia de Abajo FJ (2014) ACS Photonics 1:135–152

    Article  CAS  Google Scholar 

  20. Velizhanin KA, Shahbazyan TV (2012) Phys Rev B 86:245432

    Article  Google Scholar 

  21. Biehs SA, Agarwal GS (2013) Appl Phys Lett 103:243112

    Article  Google Scholar 

  22. Xia F (2013) Nat Photonics 7:420

    Article  Google Scholar 

  23. Christensen T, Jauho A-P, Wubs M, Mortensen NA (2015) Phys Rev B 91:125414

    Article  Google Scholar 

  24. Falkovsky LA, Varlamov AA (2007) Eur Phys J B 56:281–284

    Article  CAS  Google Scholar 

  25. Lorenz L (1892) Videnskab Selskab Skrifter 6:1–62

    Google Scholar 

  26. Mie G (1908) Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  27. Bohren CF, Hunt AJ (1977) Can J Phys 55:1930–1935

    Article  Google Scholar 

  28. Chung HY, Leung PT, Tsai DP (2013) J Chem Phys 138:224101

    Article  CAS  Google Scholar 

  29. Thongrattanasiri S, Manjavacas A, Garcia de Abajo FJ (2012) ACS Nano 6:1766–1775

    Article  CAS  Google Scholar 

  30. Durach M, Rusina A, Klimov VI, Stockman MI (2008) New J Phys 10:105011

    Article  Google Scholar 

  31. Hwang EH, Das Sarma S (2007) Phys Rev B 75:205418

    Article  Google Scholar 

  32. Mak KF, Ju L, Wang F, Heinz TF (2012) Solid State Commun 152:1341

    Article  CAS  Google Scholar 

  33. Veltri A, Aradian A (2012) Phys Rev B 85:115429

    Article  Google Scholar 

  34. Yang H, Hou Z, Zhou N, He B, Cao J, Kuang Y (2014) Ceram Int 40:13903

    Article  CAS  Google Scholar 

  35. Wang W, Klinaret JM (2013) Phys Rev B 87:195424

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Beijing Talent Fund (grant no. 2014000020124G061), as well as by the National Science Council of Taiwan through grant MOST 103-2112-M-019-003-MY3. PTL thanks Prof. Hai-Pang Chiang for his hosting during his visit to NTOU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, T., Chang, R. & Leung, P.T. Förster Resonance Energy Transfer Between Molecules in the Vicinity of Graphene-Coated Nanoparticles. Plasmonics 11, 1239–1246 (2016). https://doi.org/10.1007/s11468-015-0167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0167-0

Keywords

Navigation