, Volume 11, Issue 5, pp 1207–1212 | Cite as

Magnetic-Based Fano Resonance by a Trimer with Y-shaped Gap

  • Li Liu
  • Yiping HuoEmail author
  • Yuan Li
  • Kaijun Zhao


We introduce a Y-shaped gap into a silver disk to break the structure symmetry which can be looked as a loop-linked structure. Magnetic resonances are excited by incident light when incident electric field is parallel to the trimer plane. Fano resonance is generated by the coupling between bright electric mode and dark magnetic mode. These resonances can be adjusted by tuning the gap size, the radius of trimer, and the position of Y-shaped gap. The extinction cross section of the structure is calculated with the finite element method (FEM). The maximum figure of merit (FOM) is 37.8. Both the magnetic and electric field are greatly enhanced at the Fano dip and the magnetic resonance peak.


Fano resonance (FR) Magnetic resonance Figure of merit (FOM) Finite element method (FEM) 



The work was supported by the Fundamental Research Funds for the Central Universities (GK201002038) and Natural Science Basis Research Plan in Shaanxi Province of China (2011JQ1014).


  1. 1.
    Pendry AJHJB, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084CrossRefGoogle Scholar
  2. 2.
    Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12:1660–1667CrossRefGoogle Scholar
  3. 3.
    Chen Z, Yu L (2014) Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J 6Google Scholar
  4. 4.
    Shafiei F, Monticone F, Le KQ, Liu XX, Hartseld T, Alu A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–99CrossRefGoogle Scholar
  5. 5.
    Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science 316:430–432CrossRefGoogle Scholar
  6. 6.
    Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902CrossRefGoogle Scholar
  7. 7.
    Sheikholeslami SN, Garcia-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934CrossRefGoogle Scholar
  8. 8.
    Liu N, Mukherjee S, Bao K, Brown LV, Dorfmuller J, Nordlander P, Halas NJ (2012) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett 12:364–369CrossRefGoogle Scholar
  9. 9.
    Campione S, Guclu C, Ragan R, Capolino F (2014) Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles. Acs Photonics 1:254–260CrossRefGoogle Scholar
  10. 10.
    Urzhumov YA, Shvets G, Fan JA, Capasso F, Brandl D, Nordlander P (2007) Plasmonic nanoclusters: a path towards negative-index metafluids. Opt Express 15:14129–14145CrossRefGoogle Scholar
  11. 11.
    Zhang Q, Wen XL, Li GY, Ruan QF, Wang JF, Xiong QH (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7:11071–11078CrossRefGoogle Scholar
  12. 12.
    Zaccaria RP, De Angelis F, Toma A, Razzari L, Alabastri A, Das G, Liberale C, Di Fabrizio E (2012) Surface plasmon polariton compression through radially and linearly polarized source. Opt Lett 37:545–547CrossRefGoogle Scholar
  13. 13.
    Nazir A, Panaro S, Zaccaria RP, Liberale C, De Angelis F, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171CrossRefGoogle Scholar
  14. 14.
    Wang JQ, Fan CZ, He JN, Ding P, Liang EJ, Xue QZ (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21:2236–2244CrossRefGoogle Scholar
  15. 15.
    Verre R, Yang ZJ, Shegai T, Kall M (2015) Optical magnetism and plasmonic Fano resonances in metal–insulator–metal oligomers. Nano Lett 15:1952–1958CrossRefGoogle Scholar
  16. 16.
    Tay LL, Hulse J, Kennedy D, Pezacki JP (2010) Surface-enhanced Raman and resonant Rayleigh scatterings from adsorbate saturated nanoparticles. J Phys Chem C 114:7356–7363CrossRefGoogle Scholar
  17. 17.
    Tripathy S, Marty R, Lin VK, Teo SL, Ye EY, Arbouet A, Saviot L, Girard C, Han MY, Mlayah A (2011) Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers. Nano Lett 11:431–437CrossRefGoogle Scholar
  18. 18.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  19. 19.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  20. 20.
    Zheng W, Wan W, Chen Y, Liu Z (2014) From Fano-like interference to superscattering with a single metallic nanodisk. Nanoscale 6:9093CrossRefGoogle Scholar
  21. 21.
    Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in nanoellipsoid/ring plasmonic cavities, Plasmonics 1–8Google Scholar
  22. 22.
    Wu YN, Zheng HR, Li JN, Wang C, Li CX, Dong J (2015) Generation and manipulation of ultrahigh order plasmon resonances in visible and near-infrared region. Opt Express 23:10836–10846CrossRefGoogle Scholar
  23. 23.
    Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles, Wiley-VCHGoogle Scholar
  24. 24.
    Jin JM (2014) The finite element method in electromagnetics. Wiley-IEEEGoogle Scholar
  25. 25.
    Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825CrossRefGoogle Scholar
  26. 26.
    Park TH, Nordlander P (2009) On the nature of the bonding and antibonding metallic film and nanoshell plasmons. Chem Phys Lett 472:228–231CrossRefGoogle Scholar
  27. 27.
    Wen FF, Ye J, Liu N, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles. Nano Lett 12:5020–5026CrossRefGoogle Scholar
  28. 28.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164CrossRefGoogle Scholar
  29. 29.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511CrossRefGoogle Scholar
  30. 30.
    Yang YB, Liu SD, Chen ZH (2013) Excitation of multipole Fano resonances in plasmonic clusters with D 2 h point group symmetry, J Phys Chem C 117Google Scholar
  31. 31.
    Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2012) Nano-hole array structure with improved surface plasmon energy matching characteristics, Appl Phys Lett 100Google Scholar
  32. 32.
    Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations