Advertisement

Plasmonics

, Volume 11, Issue 5, pp 1201–1206 | Cite as

Staked Graphene for Tunable Terahertz Absorber with Customized Bandwidth

  • Yanqin Wang
  • Maowen Song
  • Mingbo Pu
  • Yu Gu
  • Chenggang Hu
  • Zeyu Zhao
  • Changtao Wang
  • Honglin Yu
  • Xiangang LuoEmail author
Article

Abstract

Terahertz (THz) absorber with dynamically tunable bandwidth possesses huge application value in the fields of switches, sensors, and THz detection. However, the perfect absorbers based on photonic crystals and metamaterials are not intelligent enough to capture the electromagnetic wave in a tunable way. In this paper, we utilized only patterned graphene to tune the absorption positions and the bandwidth in the terahertz regime. More distinguished than some dynamic absorbers proposed before, the performances with peak frequency relative tuning range of 68 % and nearly unity absorbance are obtained by a single cross-shaped graphene layer. Additionally, the working bandwidth can be broadened with stacked structured graphene. The almost perfect absorption shifted from 2.36∼3.2 to 3.26∼3.99 THz continuously via changing the chemical potential of graphene.

Keywords

Metamaterial absorber Terahertz absorber Tunable absorber Graphene 

Notes

Acknowledgments

This work was supported by 973 Program of China (no. 2013CBA01700) and National Natural Science Funds (nos. 61138002 and 61575201).

References

  1. 1.
    Sirtori C (2000) Nature 417:132CrossRefGoogle Scholar
  2. 2.
    Tonouchi M (2007) Nat Photon 1:97CrossRefGoogle Scholar
  3. 3.
    Pu M, Wang M, Hu C, Huang C, Zhao Z, Wang Y, Luo X (2012) Opt Express 20:25513–25519CrossRefGoogle Scholar
  4. 4.
    Feng Q, Pu M, Hu C, Luo X (2012) Opt Lett 37:2133–2135CrossRefGoogle Scholar
  5. 5.
    Pu M, Feng Q, Hu C, Luo X (2012) Plasmonics 7:733–738CrossRefGoogle Scholar
  6. 6.
    Luo X, Pu M, Ma X, Li X (2015) Int J Antennas Propag 2015:204127Google Scholar
  7. 7.
    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Gu M, Hong M, Luo X (2015) Sci Adv 1:e1500396CrossRefGoogle Scholar
  8. 8.
    Cui Y, He Y, Jin Y, Ding F, Yang L, Ye Y, Zhong S, Lin Y, He S (2014) Laser Photonics Rev 8:495–520CrossRefGoogle Scholar
  9. 9.
    Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X (2015) Sci Rep 5:8434CrossRefGoogle Scholar
  10. 10.
    Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X (2012) Opt Express 20:2246–2254CrossRefGoogle Scholar
  11. 11.
    Luo X (2015) Sci China-Phys Mech Astron 58:594201CrossRefGoogle Scholar
  12. 12.
    Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X (2013) Opt Express 21:992–1001CrossRefGoogle Scholar
  13. 13.
    Withayachumnankul W, Abbott D (2009) IEEE Photonics J 1:99CrossRefGoogle Scholar
  14. 14.
    Chen HT, Padilla WJ, Zide JM, Gossard AC, Taylor AJ, Averitt RD (2006) Nature 444:597CrossRefGoogle Scholar
  15. 15.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  16. 16.
    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2006) Science 320:206CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Nature 459:820CrossRefGoogle Scholar
  18. 18.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Nat Nanotechnol 6:630CrossRefGoogle Scholar
  19. 19.
    Vakil A, Engheta N (2011) Science 332:1291CrossRefGoogle Scholar
  20. 20.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Nat Nanotechnol 7:330CrossRefGoogle Scholar
  21. 21.
    Pu M, Chen P, Wang Y, Zhao Z, Wang C, Huang C, Hu C, Luo X (2013) Opt Express 21:11618CrossRefGoogle Scholar
  22. 22.
    Wang M, Wang Y, Pu M, Hu C, Wu X, Zhao Z, Luo X (2014) J Appl Phys 115:154312CrossRefGoogle Scholar
  23. 23.
    Woo JM, Kim MS, Kim HW, Jang JH (2014) App Phys Lett 104:081106CrossRefGoogle Scholar
  24. 24.
    Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) Opt Express 20:28017CrossRefGoogle Scholar
  25. 25.
    Amin M, Farhat M, Bağcɪ H (2013) Opt Express 21:29938CrossRefGoogle Scholar
  26. 26.
    Andryieuski A, Lavrinenko AV (2013) Opt Express 21:9144CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Feng Y, Zhu B, Zhao J, Jang T (2014) Opt Express 22:22743CrossRefGoogle Scholar
  28. 28.
    Falkovsky LA, Pershoguba SS (2007) Phys Rev B 76:153410CrossRefGoogle Scholar
  29. 29.
    Hwang EH, Das Sarma S (2007) Phys Rev B 76:205418CrossRefGoogle Scholar
  30. 30.
    Hanson GW (2008) J Appl Phys 103:064302CrossRefGoogle Scholar
  31. 31.
    Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Opt Express 19:17413CrossRefGoogle Scholar
  32. 32.
    Teperik TV, García de Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ (2008) Nat Photon 2:209CrossRefGoogle Scholar
  33. 33.
    Song M, Yu H, Hu C, Pu M, Zhang Z, Luo J, Luo X (2013) Opt Express 21:32207–32216CrossRefGoogle Scholar
  34. 34.
    Shen X, Cui T, Zhao J, Ma H, Jiang W, Li H (2011) Opt Express 19:9401CrossRefGoogle Scholar
  35. 35.
    Wang M, Hu C, Pu M, Huang C, Zhao Z, Feng Q, Luo X (2011) Opt Express 19:20642–20649CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yanqin Wang
    • 1
  • Maowen Song
    • 1
    • 2
  • Mingbo Pu
    • 1
  • Yu Gu
    • 1
  • Chenggang Hu
    • 1
  • Zeyu Zhao
    • 1
  • Changtao Wang
    • 1
  • Honglin Yu
    • 2
  • Xiangang Luo
    • 1
    Email author
  1. 1.State Key Lab of Optical Technology for Microfabrication, Institute of Optics and ElectronicsChinese Academy of ScienceChengduChina
  2. 2.Key Lab of Optoelectronic Technology and Systems of Education Ministry of ChinaChongqing UniversityChongqingChina

Personalised recommendations