, Volume 11, Issue 4, pp 1101–1107 | Cite as

Illumination Dependent Optical Properties of Plasmonic Nanorods Coupled to Thin-Film Cavities

  • Xingxing Chen
  • Min QiuEmail author
  • Richard J. BlaikieEmail author
  • Boyang DingEmail author


The scattering spectra and intensity of gold nanorods placed at varied distances above gold films have been simulated and measured under various conditions, demonstrating that scattering characteristics of the nanorod-film system are highly dependent on illumination conditions. Studying the surrounding electric fields of nanorods reveals that the illumination-dependent properties of the system are induced by the interference in the nanorod-film system. Both simulations and experiments show that optimising the nanorod-film distance can greatly enhance scattering magnitudes up to ~20 times for certain illumination conditions. We propose an application of the studied system in facilitating photo-thermal conversion.


Gold nanorod Thin-film Fabry-Perot cavity Illumination-dependence photo-thermal effect 



This work was financially supported by New Zealand’s Marsden Fund through contract UOO-1214, the Priming Partnership Pilot Funding (University of Otago), the National Natural Science Foundation of China (grants 61275030, 61205030, and 61235007), the Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, and the Swedish Foundation for Strategic Research (SSF) and the Swedish Research Council (VR).

Supplementary material

11468_2015_148_MOESM1_ESM.doc (836 kb)
Fig. S1 Scattering cross-section of AuNRs placed at d = 50 (black line), 100 (red line), 160 (blue line) and 200 nm (green line) under normal incidence (d), E y (e) and H x (f) illuminations. Top schematics show configurations for each illumination conditions. (DOC 835 kb)
11468_2015_148_MOESM2_ESM.doc (528 kb)
Fig. S2 schematic of the scattering measurement on single AuNRs above a Au substrate using reflection Dark-Field microscopy. The illumination shines on the sample with an incident angle from all azimuthal directions. (DOC 528 kb)
11468_2015_148_MOESM3_ESM.doc (1.1 mb)
Fig. S3 (a) simulated scattering cross-section of AuNRs placed at d = 50 (black line), 100 (red line), 160 (blue line) and 200 nm (green line) under unpolarized illumination with an incident angle θ = 53° and their normalizations (b). (c) Experimentally acquired scattering spectra of AuNRs (marked with red circles in the far-field scattering images) at d = 50 (black line), 100 (red line), 160 (blue line) and 200 nm (green line) using a dark-field microscope mentioned in Fig. S2 and their normalizations (d). Far-field scattering images (left) scanning electron microscope (SEM) images (right) for AuNRs at d = 50 (e), 100 (f), 160 (g) and 200 nm (h). The SEM images show the physical appearances of AuNRs marked by the red circles in each panel. (DOC 1085 kb)


  1. 1.
    Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209–2213CrossRefGoogle Scholar
  2. 2.
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR (2008) Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett 8:2245–2252CrossRefGoogle Scholar
  3. 3.
    Hu M, Ghoshal A, Marquez M, Kik PG (2010) Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances. J Phys Chem C 114:7509–7514CrossRefGoogle Scholar
  4. 4.
    Chen X, Yang Y, Chen Y-H, Qiu M, Blaikie RJ, Ding B (2015) Probing plasmonic gap resonances between gold nanorods and a metallic surface. J Phys Chem C 119:18627–18634CrossRefGoogle Scholar
  5. 5.
    Seok TJ, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck PJ, Cabrini S, Schwartzberg AM, Bokor J, Yablonovitch E, Wu MC (2011) Radiation engineering of optical antennas for maximum field enhancement. Nano Lett 11:2606–2610CrossRefGoogle Scholar
  6. 6.
    Ameling R, Langguth L, Hentschel M, Mesch M, Braun PV, Giessen H (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97:253116CrossRefGoogle Scholar
  7. 7.
    Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA (2012) Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun 3:1108CrossRefGoogle Scholar
  8. 8.
    Shoute LCT (2010) Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver. ChemPhysChem 11:2539–2545CrossRefGoogle Scholar
  9. 9.
    Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R (2011) Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Opt Express 19:1648–1655CrossRefGoogle Scholar
  10. 10.
    Ahmed A, Gordon R (2011) Directivity enhanced Raman spectroscopy using nanoantennas. Nano Lett 11:1800–1803CrossRefGoogle Scholar
  11. 11.
    Ahmed A, Gordon R (2012) Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett 12:2625–2630CrossRefGoogle Scholar
  12. 12.
    Wang D, Zhu W, Chu Y, Crozier KB (2012) High directivity optical antenna substrates for surface enhanced Raman scattering. Adv Mater 24:4376–4380CrossRefGoogle Scholar
  13. 13.
    Wang D, Zhu W, Best MD, Camden JP, Crozier KB (2013) Directional Raman scattering from single molecules in the feed gaps of optical antennas_si_001.pdf. Nano Lett 13:2194–2198CrossRefGoogle Scholar
  14. 14.
    Wang D, Zhu W, Best MD, Camden JP, Crozier KB (2013) Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy. Sci Rep 3:2867Google Scholar
  15. 15.
    Ahmed A, Pang Y, Hajisalem G, Gordon R (2012) Antenna design for directivity-enhanced Raman spectroscopy. Int J Opt. doi: 10.1155/2012/729138
  16. 16.
    Milekhin AG, Yeryukov NA, Sveshnikova LL, Duda TA, Rodyakina EE, Gridchin VA, Sheremet ES, Zahn DRT (2015) Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures. Beilstein J Nanotechnol 6:749–754CrossRefGoogle Scholar
  17. 17.
    Brown LV, Yang X, Zhao K, Zheng BY, Nordlander P, Halas NJ (2015) Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett 15:1272–1280CrossRefGoogle Scholar
  18. 18.
    Schalkhammer T, Lobmaier C, Pittner F, Leitner A, Brunner H, Aussenegg FR (1995) The use of metal-island-coated pH-sensitive swelling polymers for biosensor applications. Sens Actuators B Chem 24:166–172CrossRefGoogle Scholar
  19. 19.
    Schalkhammer T, Lobmaier C, Pittner F, Leitner A, Brunner H, Aussenegg FR (1995) Metal island coated polymer sensor for direct determination of the volume effect of chaotropic agents. Mikrochim Acta 121:259–268CrossRefGoogle Scholar
  20. 20.
    Bauer G, Pittner F, Schalkhammer T (1999) Metal nano-cluster biosensors. Mikrochim Acta 131:107–114CrossRefGoogle Scholar
  21. 21.
    Mayer C, Stich N, Palkovits R, Bauer G, Pittner F, Schalkhammer T (2001) High-throughput assays on the chip based on metal nano-cluster resonance transducers. J Pharm Biomed 24:773–783CrossRefGoogle Scholar
  22. 22.
    Palkovits R, Mayer C, Bauer G, Winkler H, Pittner F, Schalkhammer T (2003) Structural behavior of nanometric carbohydrate films transduced by a resonant technique. Biopolymers 69:333–342CrossRefGoogle Scholar
  23. 23.
    Hiep HM, Yoshikawa H, Saito M, Tamiya E (2009) An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers. ACS Nano 3:446–452CrossRefGoogle Scholar
  24. 24.
    Kuchler I, Pittner F, Pittner G, Sontag G (2010) Development of a metal-island-coated swelling/shrinking copolymer sensor for measurement of divalent metal ions. Monatsh Chem 141:131–135CrossRefGoogle Scholar
  25. 25.
    Sannomiya T, Balmer TE, Hafner C, Heuberger M, Vörös J (2010) Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor. Rev Sci Instrum 81:053102Google Scholar
  26. 26.
    Li G, Chen X, Li O, Shao C, Jiang Y, Huang L, Ni B, Hu W, Lu W (2012) A novel plasmonic resonance sensor based on an infrared perfect absorber. J Phys D Appl Phys 45:205102CrossRefGoogle Scholar
  27. 27.
    Lee M, Jeon H, Kim S (2015) A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Lett 15:3358–3363Google Scholar
  28. 28.
    Fernandez-Garcia R, Rahmani M, Hong M, Maier SA, Sonnefraud Y (2013) Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. Opt Express 21:12552–12561CrossRefGoogle Scholar
  29. 29.
    Butet J, Martin OJF (2014) Manipulating the optical bistability in a nonlinear plasmonic nanoantenna array with a reflecting surface. Plasmonics 10:203–209CrossRefGoogle Scholar
  30. 30.
    Fang Y, Jiao Y, Xiong K, Ogier R, Yang Z-J, Gao S, Dahlin AB, Käll M (2015) Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO 2 Nanostructures. Nano Lett 15:4059–4065Google Scholar
  31. 31.
    Wirth J, Garwe F, Bergmann J, Paa W, Csaki A, Stranik O, Fritzsche W (2014) Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers. Nano Lett 14:570–577CrossRefGoogle Scholar
  32. 32.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  33. 33.
    Hodgkinson IJ, Wu Q (1997) Birefringent thin films and polarizing elements. World Scientific, SingaporeGoogle Scholar
  34. 34.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557CrossRefGoogle Scholar
  35. 35.
    Chen X, Chen Y, Dai J, Yan M, Zhao D, Li Q, Qiu M (2014) Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale 6:1756–1762CrossRefGoogle Scholar
  36. 36.
    Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413CrossRefGoogle Scholar
  37. 37.
    Do J, Fedoruk M, Jäckel F, Feldmann J (2013) Two-color laser printing of individual gold nanorods. Nano Lett 13:4164–4168CrossRefGoogle Scholar
  38. 38.
    Ma H, Bendix PM, Oddershede LB (2012) Large-scale orientation dependent heating from a single irradiated gold nanorod. Nano Lett 12:3954–3960CrossRefGoogle Scholar
  39. 39.
    Zhang W, Li Q, Qiu M (2013) A plasmon ruler based on nanoscale photothermal effect. Opt Express 21:172–181CrossRefGoogle Scholar
  40. 40.
    Wang P (2013) Hybrid micro/nanofibre-Au nanorod structure: a new platform for “photonic-plasmonic” research at nanoscale. PhD thesis, Zhejiang University, ChinaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Modern Optical Instrumentation, Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Information and Communication TechnologyRoyal Institute of TechnologyKistaSweden
  3. 3.MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of PhysicsUniversity of OtagoDunedinNew Zealand

Personalised recommendations