Skip to main content
Log in

Surface Plasmon Resonance Immunosensor for the Detection of Burkholderia pseudomallei

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Environmental surveillance of the Gram-negative bacterium Burkholderia pseudomallei is important in order to define human populations at risk of acquiring the infection; hence, in this study, we developed a method for the detection of B. pseudomallei based on surface plasmon resonance (SPR) using 4-mercaptobenzoic acid (4-MBA) modified gold SPR chip by monitoring the interaction of rpGroEL antigen (rpGroEL Ag) with immobilized rabbit antibody (anti-rpGroEL rAb). Affinity constant (K D ) and maximum binding capacity of analyte (B max) values for the interaction of rpGroEL Ag with the immobilized anti-rpGroEL rAb were calculated by using kinetic evaluation software and found to be 14.7 7 pM and 105.40 mo, respectively. In addition, thermodynamic parameters such as ∆G (Gibb’s free energy change), ∆H (change in the enthalpy), and ∆S (change in the entropy) were determined for the interaction between rpGroEL Ag and immobilized anti-rpGroEL rAb, and the values revealed that the interaction is spontaneous, exothermic, and driven by entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thavaselvam D, Vijayaraghavan R (2010) Biological warfare agents. J Pharm Bioallied Sci 2:179–188

    Article  CAS  Google Scholar 

  2. 2000 Emergency response guidebook: a guidebook for first responders during the initial phase of a dangerous goods/hazardous materials incident (2000). The Office of Hazardous Materials Safety, U.S. Department of Transportation. Washington, DC

  3. Battlebook Project Team, USACHPPM, & OSG (2000) The medical NBC battle book USACHPPM tech guide 244, Aberdeen Proving Ground, MD, United States Army Research Institute of Medical Defense, p 244

  4. Wiersinga WJ, Poll TV, White NJ, Day NP, Peacock SJ (2006) Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 4:272–282

    Article  CAS  Google Scholar 

  5. Peacock SJ, Chieng G, Cheng AC (2005) Comparison of Ashdown’s medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei. J Clin Microbiol 43:5359–5361

    Article  Google Scholar 

  6. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia. Microbiol Immunol 36:1251–1275

    Article  CAS  Google Scholar 

  7. Burkholderia pseudomallei http://pathport.vbi.vt.edu/pathinfo/pathogens/Burkholderiapseudomallei.html (2006) Virginia Tech Pathogen Database Retrieved 2006-03-26. doi:10.1186/1471-2180-10-28

  8. Lee YH, Chen Y, Ouyang X, Gan YH (2010) Identification of tomato plant as a novel host model for Burkholderia pseudomallei. BMC Microbiol 10(28):1–11

    Google Scholar 

  9. Haase A, Janzen J, Barrett S, Currie B (1997) Toxin production by Burkholderia pseudomallei strains and correlation with severity of melioidosis. J Med Microbiol 46:557–563

    Article  CAS  Google Scholar 

  10. Chaiyaroj SC, Kotrnon K, Koonpaew S, Anantagool N, White NJ, Sirisinha S (1999) Differences in genomic macrorestriction patterns of arabinose-positive (Burkholderia thailandensis) and arabinose-negative Burkholderia pseudomallei. Microbiol Immunol 43:625–630

    Article  CAS  Google Scholar 

  11. Dance DA (1991) Melioidosis: the tip of the iceberg? Clin Microbiol Rev 4:52–60

    Article  CAS  Google Scholar 

  12. Miller WR, Pannell L, Cravitz L, Tanner WA, Ingalls MS (1948) Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. I. Morphology, cultivation, viability, and isolation from contaminated specimens. J Bacteriol 55:115–126

    Google Scholar 

  13. Howard K, Inglis TJ (2003) The effect of free chlorine on Burkholderia pseudomallei in potable water. Water Res 37:4425–4432

    Article  CAS  Google Scholar 

  14. Howard K, Inglis TJ (2005) Disinfection of Burkholderia pseudomallei in potable water. Water Res 39:1085–1092

    Article  CAS  Google Scholar 

  15. Ruppitsch W, Stöger A, Indra A, Grif K, Schabereiter-Gurtner C, Hirschl A, Allerberger F (2007) Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens. J Appl Microbiol 102:852–859

    Article  CAS  Google Scholar 

  16. Wattiau P, Van Hessche M, Neubauer H, Zachariah R, Wernery U, Imberechts H (2007) Identification of Burkholderia pseudomallei and related bacteria by multiple-locus sequence typing-derived PCR and real-time PCR. J Clin Microbiol 45:1045–1048

    Article  CAS  Google Scholar 

  17. Hagen RM, Frickmann H, Elschner M, Melzer F, Neubauer H, Gauthier YP, Racz P, Poppert S (2011) Rapid identification of Burkholderia pseudomallei and Burkholderia mallei by fluorescence in situ hybridization (FISH) from culture and paraffin-embedded tissue samples. Int J Med Microbiol 301:585–590

    Article  CAS  Google Scholar 

  18. Amornchai P, Chierakul W, Wuthiekanun V, Mahakhunkijcharoen Y, Phetsouvanh R, Currie BJ, Newton PN, van Vinh Chau N, Wongratanacheewin S, Day NP, Peacock SJ (2007) Accuracy of Burkholderia pseudomallei identification using the API 20NE system and a latex agglutination test. J Clin Microbiol 45:3774–3776

    Article  Google Scholar 

  19. Wuthiekanun V, Desakorn V, Wongsuvan G, Amornchai P, Cheng AC, Maharjan B, Limmathurotsakul D, Chierakul W, White NJ, Day NP, Peacock SJ (2005) Rapid immunofluorescence microscopy for diagnosis of melioidosis. Clin Diagn Lab Immunol 12:555–556

    CAS  Google Scholar 

  20. Jiang X, Waterland M, Blackwell L, Partridge A (2010) Determination of Estriol 16-glucuronide in human urine with surface plasmon resonance and lateral flow immunoassays. Anal Methods 2:368–374

    Article  CAS  Google Scholar 

  21. Nabok AV, Tsargorodskaya A, Hassan AK, Starodub NF (2005) Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Appl Surf Sci 246:381–386

    Article  CAS  Google Scholar 

  22. Gupta G, Singh PK, Boopathi M, Kamboj DV, Singh B, Vijayaraghavan R (2010) Molecularly imprinted polymer for the recognition of biological warfare agent Staphylococcal enterotoxin B based on surface plasmon resonance. Thin Solid Films 519:1115–1121

    Article  CAS  Google Scholar 

  23. Gupta G, Singh PK, Boopathi M, Kamboj DV, Singh B, Vijayaraghavan R (2010) Surface plasmon resonance detection of biological warfare agent Staphylococcal enterotoxin B using high affinity monoclonal antibody. Thin Solid Films 519:1171–1177

    Article  CAS  Google Scholar 

  24. Kim M, Shin Y, Jung J, Ro H, Chung BHT (2005) Enhanced sensitivity of surface plasmon resonance (SPR) immunoassays using a peroxidase-catalyzed precipitation reaction and its application to a protein microarray. J Immunol Methods 297:125–132

    Article  CAS  Google Scholar 

  25. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  Google Scholar 

  26. Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biomembranes 1838:43–55

    Article  CAS  Google Scholar 

  27. Singh PK, Agrawal R, Kamboj DV, Gupta G, Boopathi M, Goel AK, Singh L (2010) Construction of a single-chain variable-fragment antibody against the superantigen Staphylococcal enterotoxin B. Appl Environ Microbiol 76:8184–8191

    Article  CAS  Google Scholar 

  28. Pradhan S, Boopathi M, Kumar O, Baghel A, Pandey P, Mahato TH, Singh B, Vijayaraghavan R (2009) Molecularly imprinted nanopatterns for the recognition of biological warfare agent ricin. Biosens Bioelectron 25:592–598

    Article  CAS  Google Scholar 

  29. Sikarwar B, Sharma PK, Saraswat S, Aathmaram TN, Boopathi M, Singh B, Jaiswal YK (2014) Surface plasmon resonance immunosensor for recombinant H1N1 protein. Plasmonics. doi:10.1007/s11468-014-9780-6

    Google Scholar 

  30. Sikarwar B, Sharma PK, Srivastava A, Agarwal GS, Boopathi M, Singh B, Jaiswal YK (2014) Surface plasmon resonance characterization of monoclonal and polyclonal antibodies of malaria for biosensor applications. Biosens Bioelectron 60:201–209

    Article  CAS  Google Scholar 

  31. Lutz GZ, Zuber E, Witz JMHV, Van Regenmortel V (1997) Thermodynamic analysis of antigen–antibody binding using biosensor measurements at different temperatures. Anal Biochem 246:123–132

    Article  Google Scholar 

  32. Gupta G, Bhaskar ASB, Tripathi BK, Pandey P, Boopathi M, Lakshmana Rao PV, Singh B, Vijayaraghavan R (2011) Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry. Biosens Bioelectron 26:2534–2540

    Article  CAS  Google Scholar 

  33. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    Article  CAS  Google Scholar 

  34. Liu JT, Chen LY, Shih MC, Chang Y, Chen WY (2008) The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal Biochem 375:90–96

    Article  CAS  Google Scholar 

  35. Wassaf D, Kuang G, Kopacz K, Wu QL, Nguyen Q, ToewsM CJ, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351:241–253

    Article  CAS  Google Scholar 

  36. Savara A, Schmidt CM, Geiger FM, Weitz E (2009) Adsorption entropies and enthalpies and their implications for adsorbate dynamics. J Phys Chem A 113:2806–2815

    CAS  Google Scholar 

  37. Glasstone SD (1947) Thermodynamics for chemists. Van Nostrand Company, New York, p 288

    Google Scholar 

  38. Cabilio NR, Omanovic S, Roscoe S (2000) Electrochemical studies of the effect of temperature and pH on the adsorption of α-lactalbumin at Pt. Langmuir 16:8480–8488

    Article  CAS  Google Scholar 

  39. Kamyshny A, Lagerge S, Partyk S, Relkin P, Magdassi S (2001) Adsorption of native and hydrophobized human IgG onto silica: isotherms, calorimetry, and biological activity. Langmuir 17:8242–8248

    Article  CAS  Google Scholar 

  40. Gregory RB (1995) Protein–solvent interactions. In: Marcel D (ed) New York, Chapter 11

  41. Gupta G, Kumar A, Boopathi M, Thavaselvam D, Singh B, Vijayaraghavan R (2011) Rapid and quantitative determination of biological warfare agent Brucella abortus CSP-31 using surface plasmon resonance. Anal Bioanal Electrochem 3:26–37

    Google Scholar 

  42. Paynter S, Russell DA (2002) Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change of electrostatic interaction effects? Anal Biochem 309:85–95

    Article  CAS  Google Scholar 

  43. Gupta G, Sharma PK, Sikarwar B, Merwyn S, Kaushik S, Boopathi M, Agarwal GS, Singh B (2012) Surface plasmon resonance immunosensor for the detection of Salmonella typhi antibodies in buffer and patient serum. Biosens Bioelectron 36:95–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Lokendra Singh, Director, Defence Research and Development Establishment, DRDO, Gwalior-474002, India for his keen interest and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannan Boopathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikarwar, B., Sharma, P.K., Kumar, A. et al. Surface Plasmon Resonance Immunosensor for the Detection of Burkholderia pseudomallei . Plasmonics 11, 1035–1042 (2016). https://doi.org/10.1007/s11468-015-0139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0139-4

Keywords

Navigation