Advertisement

Plasmonics

, Volume 11, Issue 3, pp 811–816 | Cite as

Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness

  • István Márton
  • Viktor Ayadi
  • Péter Rácz
  • Tomasz Stefaniuk
  • Piotr Wróbel
  • Péter Földi
  • Péter Dombi
Article
  • 336 Downloads

Abstract

We demonstrate ultrafast plasmonic electron emission and acceleration from Ag nanolayers having different roughness. We obtained the spectrum of the electrons and found that the surface roughness deeply influences the properties of the electron spectra. Numerical simulations on propagating surface plasmons coupled to localized plasmons on surface grains support the observations. Applications related to ultrafast electron sources and ultrafast photocathodes are envisaged.

Keywords

Ultrafast phenomena Nanoparticles Electron emission Surface plasmons 

Notes

Acknowledgments

We acknowledge support from the Hungarian Academy of Sciences (Lendület Grant). This work was also partially supported by the European Union and the European Social Fund through project entitled ELITeam at the University of Szeged, and by the National Research, Development and Innovation Office under Contract No. PD 109472, 109257 and 116688. We wish to thank Tomasz Szoplik for his help in sample fabrication and Pál Mezei for fruitful discussions.

References

  1. 1.
    Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62CrossRefGoogle Scholar
  2. 2.
    Chen H, Boneberg J, Leiderer P (1993) Surface-plasmon-enhanced multiple-photon photoemission from Ag and Al films. Phys Rev B 47:9956–9958CrossRefGoogle Scholar
  3. 3.
    Irvine SE, Dechant A, Elezzabi AY (2004) Generation of 0.4-kev femtosecond electron pulses using impulsively excited surface plasmons. Phys Rev Lett 93:184–801CrossRefGoogle Scholar
  4. 4.
    Irvine SE, Dombi P, Farkas G, Elezzabi AY (2006) Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration. Phys Rev Lett 97:146– 801CrossRefGoogle Scholar
  5. 5.
    Kupersztych J, Monchicourt P, Raynaud M (2001) Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys Rev Lett 86:5180– 5183CrossRefGoogle Scholar
  6. 6.
    Teichmann SM, Rácz P, Ciappina MF, Pérez-Hernández JA, Thai A, Fekete J, Elezzabi AY, Veisz L, Biegert J, Dombi P (2015) Strong-field plasmonic photoemission in the mid-IR at < 1 GW/cm 2 intensity. Sci Rep 5(7584)Google Scholar
  7. 7.
    Thomas S, Krüger M, Förster M, Schenk M, Hommelhoff P (2013) Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Lett 13(10):4790–4794. pMID: 24032432CrossRefGoogle Scholar
  8. 8.
    Tsang T, Srinivasan-Rao T, Fischer J (1991) Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys Rev B 43:8870–8878CrossRefGoogle Scholar
  9. 9.
    Zawadzka J, Jaroszynski DA, Carey JJ, Wynne K (2000) Evanescent-wave acceleration of femtosecond electron bunches. Nucl Instrum Methods Phys Res, Sect A 445(1–3):324–328CrossRefGoogle Scholar
  10. 10.
    Zawadzka J, Jaroszynski DA, Carey JJ, Wynne K (2001) Evanescent-wave acceleration of ultrashort electron pulses. Appl Phys Lett 79(14):2130–2132CrossRefGoogle Scholar
  11. 11.
    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246CrossRefGoogle Scholar
  12. 12.
    Ren W, Dai Y, Cai H, Ding H, Pan N, Wang X (2013) Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt Express 21 (8):10,251–10,258CrossRefGoogle Scholar
  13. 13.
    Sarkar M, Besbes M, Moreau J, Bryche JF, Olivéro A, Barbillon G, Coutrot AL, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics 2(2):237–245CrossRefGoogle Scholar
  14. 14.
    Dombi P, Hörl A, Rácz P, Márton I, Trügler A, Krenn JR, Hohenester U (2013) Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett 13(2):674–678. pMID: 23339740CrossRefGoogle Scholar
  15. 15.
    Herink G, Solli DR, Gulde M, Ropers C (2012) Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483(3):190CrossRefGoogle Scholar
  16. 16.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. No. 111. k. in Springer tracts in modern physics. Springer. https://books.google.hu/books?id=ZLwrAAAAYAAJ
  17. 17.
    Stefaniuk T, Wróbel P, Górecka E, Szoplik T (2014) Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res Lett 9:153–161CrossRefGoogle Scholar
  18. 18.
    Stefaniuk T, Wróbel P, Trautman P, Szoplik T (2014) Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity. Appl Opt 53:B237–B241CrossRefGoogle Scholar
  19. 19.
    Wróbel P, Stefaniuk T, Trzcinski M, Wronkowska AA, Wronkowski A, Szoplik T (2015) Ge wetting layer increases ohmic plasmon losses in ag film due to segregation. ACS Appl Mater Interfaces 7:8999–9005CrossRefGoogle Scholar
  20. 20.
    Trügler A, Tinguely JC, Krenn JR, Hohenau A, Hohenester U (2011) Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys Rev B 83:081–412CrossRefGoogle Scholar
  21. 21.
    Trügler A, Tinguely JC, Jakopic G, Hohenester U, Krenn JR, Hohenau A (2014) Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys Rev B 89:165–409CrossRefGoogle Scholar
  22. 22.
    Rácz P, Irvine SE, Lenner M, Mitrofanov A, Baltuška A, Elezzabi AY, Dombi P (2011) Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl Phys Lett 98(11)Google Scholar
  23. 23.
    Dombi P, Irvine SE, Rácz P, Lenner M, Kroó N, Farkas G, Mitrofanov A, Baltuška A, Fuji T, Krausz F, Elezzabi AY (2010) Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt Express 18(23):24,206–24,212CrossRefGoogle Scholar
  24. 24.
    Word RC, Fitzgerald J, Könenkamp R (2011) Photoelectron emission control with polarized light in plasmonic metal random structures. Appl Phys Lett 99(4)Google Scholar
  25. 25.
    Farkas G, Horváth Z, Kertész I (1972) Influence of optical field emission on the nonlinear photoelectric effect induced by ultrashort laser pulses. Phys Lett A 39(3):231–232CrossRefGoogle Scholar
  26. 26.
    Keldysh LV (1965) Ionization in the field of a strong electromagnetic wave. Sov Phys - JETP 20(5):1307–1314Google Scholar
  27. 27.
    Aeschlimann M, Schmuttenmaer CA, Elsayed-Ali HE, Miller RJD, Cao J, Gao Y, Mantell DA (1995) Observation of surface enhanced multiphoto n photoemission from metal surfaces in the short pulse limit. J Chem Phys 102(21):8606–8613CrossRefGoogle Scholar
  28. 28.
    Földi P, Márton I, Német N, Ayadi V, Dombi P (2015) Few-cycle plasmon oscillations controlling photoemission from metal nanoparticles. Appl Phys Lett 106(1):013111CrossRefGoogle Scholar
  29. 29.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. WileyGoogle Scholar
  30. 30.
    Drude P (1900) Zur elektronentheorie der metalle. Ann Phys 306(3):566–613CrossRefGoogle Scholar
  31. 31.
    Dombi P, Rácz P (2008) Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Opt Express 16(5):2887–2893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • István Márton
    • 1
    • 2
  • Viktor Ayadi
    • 1
  • Péter Rácz
    • 1
  • Tomasz Stefaniuk
    • 3
  • Piotr Wróbel
    • 3
    • 4
  • Péter Földi
    • 5
  • Péter Dombi
    • 1
  1. 1.MTA “Lendület” Ultrafast Nanooptics GroupWigner Research Centre for PhysicsBudapestHungary
  2. 2.University of PécsPécsHungary
  3. 3.Faculty of PhysicsUniversity of WarsawWarsawPoland
  4. 4.Institute of Photonics and Electronics AS CRPragueCzech Republic
  5. 5.Department of Theoretical PhysicsUniversity of SzegedSzegedHungary

Personalised recommendations