Skip to main content
Log in

The Formation of Sodium Nanoparticles in Alkali-Silicate Glass Under the Action of the Electron Beam and Thermal Treatments

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

It is shown experimentally that the processing of the sodium-containing silicate glasses with the electron beam with electron energy 35 keV and dozes 20–65 mC/cm2 and the subsequent thermal treatment above the glass transition temperature result in the formation of the metallic sodium nanoparticles under the glass surface that manifest themselves in the plasmon resonance absorption band in the 405–410 nm spectral region. The main mechanisms of this effect are the field migration of the positive sodium ions into the negatively charged region under the glass surface, produced by the thermalized electrons, reduction of sodium ions by the thermalized electrons, and the nanoparticles growth as a result of thermal diffusion of the sodium atoms during the thermal treatment. The computer simulations in the dipole quasi-static approximation have shown that the most realistic model of the nanoparticle structure is the solid or liquid sodium core with two shells—the inner shell consisting of sodium oxide and the external one being vacuum or gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. doi:10.1016/j.physrep.2004.11.001

    Article  CAS  Google Scholar 

  2. Chakraborty P (1998) Metal nanoclusters in glasses as non-linear photonic materials. J Mater Sci 33:2235–2249

    Article  CAS  Google Scholar 

  3. Hamanaka Y, Nakamura A, Omi S, Del Fatti N, Vallee F, Flytzanis C (1999) Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Appl Phys Lett 75:1712–1714

    Article  CAS  Google Scholar 

  4. Dotsenko AV, Glebov LB, Tsekhomsky VA (1998) Physics and chemistry of photochromic glasses. CRC Press LLC, U.S.A

  5. Panysheva EI, Tunimanova IV, Tsekhomsky VA (1990) A study of coloring in polychromatic glasses. Glass Phys Chem 16:239–244

    CAS  Google Scholar 

  6. Nikonorov NV, Panisheva EI, Tunimanova IV, Chucharev AV (2001) Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys Chem 27:241–249

    Article  CAS  Google Scholar 

  7. Nikonorov NV, Sidorov AI, Tsekhomskii VA (2010) Silver nanoparticles in oxide glasses: technologies and properties. In Silver Nanoparticles. Ed. by D.P. Perez. InTech. Croatia 10:177–200. doi:10.5772/8506

    Google Scholar 

  8. Kriebig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  9. Kolobkova EV, Nikonorov NV (2015) Metal sodium nanoparticles in fluorophosphate glasses. Alloys Comp 637:545–551

    Article  CAS  Google Scholar 

  10. Nikonorov NV, Sidorov AI, Tsekhomsky VA, Nashchekin AV, Usov OA, Podsvirov OA, Poplevkin SV (2009) Electron-beam modification of the near-surface layers of photosensitive glasses. Techn Phys Lett 35:309–311

    Article  CAS  Google Scholar 

  11. Vostokov AV, Ignatiev AI, Nikonorov NV, Podsvirov OA, Sidorov AI, Nashchekin AV, Sokolov RV, Usov OA, Tsekhomsky VA (2009) Effect of electron irradiation on the formation of silver nanoclusters in photothermorefractive glasses. Techn Phys Lett 35:812–814

    Article  CAS  Google Scholar 

  12. Nashchekin AV, Usov OA, Sidorov AI, Podsvirov OA, Kurbatova NV, Tsekhomsky VA, Vostokov AV (2009) SPR of Ag nanoparticles in a photothermochromic glasses. Proc SPIE 7394:73942J-1-6. doi:10.1117/12.825988

    Google Scholar 

  13. Podsvirov OA, Ignatiev AI, Nashchekin AV, Nikonorov NV, Sidorov AI, Tsekhomskii VA, Usov OA, Vostokov AV (2010) Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation. Nucl Instr Meth in Phys Res B 268:3103–3106

    Article  CAS  Google Scholar 

  14. Podsvirov OA, Sidorov AI, Tsekhomskii VA, Vostokov AV (2010) Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys Sol St 52:1906–1909

    Article  CAS  Google Scholar 

  15. Ignat’ev AI, Nashchekin AV, Nevedomskii VM, Podsvirov OA, Sidorov AI, Solov’ev AP, Usov OA (2011) Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Techn Phys 56:662–667

    Article  CAS  Google Scholar 

  16. Brunov VS, Podsvirov OA, Sidorov AI, Churaev DV (2014) Formation of silver thin films and nanoparticles inside and on the surface of silver-containing glasses by electron irradiation. Techn Phys 59:1215–1219

    Article  CAS  Google Scholar 

  17. Nashchekin AV, Nevedomsky VN, Usov OA, Podsvirov OA, Sidorov AI (2011) Self-assembling of silver nanoparticles in glasses under electron beam irradiation. Int J of Nanosci 10:1265–1268

    Article  Google Scholar 

  18. Brunov VS, Podsvirov OA, Sidorov AI, Prosnikov MA (2014) Dissolution of a silver film in silicon glasses under electron bombardment. Techn Phys 59:1863–1868

    Article  CAS  Google Scholar 

  19. Podsvirov OA, Sidorov AI, Churaev DV (2014) Specific features of the formation of optical waveguides in silicate glass at high energy and doze of electron irradiation. Techn Phys 59:1674–1678

    Article  CAS  Google Scholar 

  20. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  21. Tervonen A, Honkanen S, Leppihalme MJ (1987) Control of ion-exchanged waveguide profiles with Ag thin-film sources. Appl Phys 62:759–763

    Article  CAS  Google Scholar 

  22. Touzin M, Goeriot D, Guerret-Piecort C, Juve D, Treheux D, Fitting H-J (2006) Electron beam charging of insulators: a self-consistent flight-drift model. J Appl Phys 99:114110-1-14

    Article  CAS  Google Scholar 

  23. Inagaki T, Arakawa ET, Birkhoff RD, Williams MW (1976) Optical properties of liquid Na between 0.6 and 3.8 eV. Phys Rev B 13:5610–5612

    Article  CAS  Google Scholar 

  24. Schulz LG (1954) The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. JOSA 44:357–362

    Article  CAS  Google Scholar 

  25. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press, San Diego, USA

  26. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New York

    Google Scholar 

  27. Yaws CL (1999) Chemical properties handbook. McGraw-Hill Education, New York

    Google Scholar 

  28. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal‐coated nanoparticles. J Appl Phys 73:1043–1048

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by Ministry of Education and Science during the scientific-research work in the frame of the project part of State task in the scientific work area for the task # 11.1227.2014/K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.I. Sidorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, E., Nikonorov, N., Podsvirov, O. et al. The Formation of Sodium Nanoparticles in Alkali-Silicate Glass Under the Action of the Electron Beam and Thermal Treatments. Plasmonics 11, 241–246 (2016). https://doi.org/10.1007/s11468-015-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0046-8

Keywords

PACS

Navigation