Skip to main content
Log in

Stability-Inspired Entrapment of Ag Nanoparticles in ZrO2 Thin films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Shape and size consistency of Ag nanoparticles is a challenging aspect when practical plasmonic devices are to be developed for their surface-specific activities. This study presents a simple chemical synthesis process which enables effective and rather uniform entrapment of Ag nanoparticles in dielectric oxide matrix at room temperature, without any assistance of physical/chemical agents. Uniformly distributed citrates capped Ag nanoparticles were preformed with a modified “Turkevich” approach and subsequently entrapped in mesoporous ZrO2 thin films. On the basis of transmission electron microscopy and photoelectron spectroscopy, results, size, shape, and chemical states of Ag nanoparticles were studied and correlated to the plasmonic properties of nanocomposite film formed by such entrapped nanoparticles. Plasmonic stability of these nanoparticles was confirmed in comparison of their dispersion on glass, and explained using extended Mie scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Pincella F, Isozaki K, Miki K (2014) A visible light-driven plasmonic photocatalyst. Light Sci Appl 3:e133

    Article  CAS  Google Scholar 

  2. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  3. Kumar M, Sandeep S, Kumar G, Mishra YK, Philip R, Reddy GB (2014) Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films. Plasmonics 9:129–136

    Article  CAS  Google Scholar 

  4. Mattei G, Mazzoldi P, Post ML, Buso D, Guglielmi M, Martucci A (2007) Cookie-like Au/NiO nanoparticles with optical gas-sensing properties. Adv Mater 19:561–564

    Article  CAS  Google Scholar 

  5. Tiwari V, Khokar MK, Tiwari M, Barala S, Kumar M (2014) Anti-bacterial activity of polyvinyl pyrrolidone capped silver nanoparticles on the carbapenem resistant strain of acinetobacter baumannii. J Nanomed Nanotechnol 5:1000246

    Article  Google Scholar 

  6. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  7. Lin Y-H, Hsu W-S, Chung W-Y, Ko T-H, Lin J-H (2014) Evaluation of various silver-containing dressing on infected excision wound healing study. J Mater Sci Mater Med 25:1375–1386

    Article  CAS  Google Scholar 

  8. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  9. Kumar M, Reddy GB (2009) Ag:ZrO2 nanocomposite thin films derived using a novel sol–gel technique. Phys Status Solidi B 246:2232–2237

    Article  CAS  Google Scholar 

  10. Kumar M, Reddy GB (2010) Tailoring surface plasmon resonance in Ag:ZrO2 nanocomposite thin films. Phys E 43:470–474

    Article  CAS  Google Scholar 

  11. Kumar M, Kulriya PK, Pivin JC, Avasthi DK (2011) Evolution and tailoring of plasmonic properties in Ag:ZrO2 nanocomposite films through swift heavy ions. J Appl Phys 109:044311

    Article  CAS  Google Scholar 

  12. Kumar M, Kumar T, Avasthi DK (2015) Study of thermal annealing induced plasmonic bleaching in Ag:TiO2 nanocomposite thin films. Scripta Mater 105:46–49

    Article  CAS  Google Scholar 

  13. Mishra YK, Adelung R, Kumar G, Elbahri M, Mohapatra S, Singhal R, Tripathi A, Avasthi DK (2013) Formation of self-organized silver nanocup-type structures and their plasmonic absorption. Plasmonics 8:811–815

    Article  CAS  Google Scholar 

  14. Schürmann U, Hartung W, Takele H, Zaporojtchenko V, Faupel F (2005) Controlled syntheses of Ag–polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16:1078

    Article  CAS  Google Scholar 

  15. Kumar M, Parashar KK, Tandi SK, Kumar T, Agarwal DC, Pathak A (2013) Fabrication of Ag:TiO2 nanocomposite thin films by sol-gel followed by electron beam physical vapour deposition technique. J Spectrosc 2013:491716

    Google Scholar 

  16. Fujita T, Ijima K, Mitsui N, Mochiduki K, Saito Y (2007) Coloration related to nanostructure of yttria-stabilized cubic zirconia single crystal implanted with Ag ions. Jpn J Appl Phys 46:7362

    Article  CAS  Google Scholar 

  17. Cai W, Hofmeister H, Rainer T (2001) Surface effect on the size evolution of surface plasmon resonances of Ag and Au nanoparticles dispersed within mesoporous silica. Phys E 11:339

    Article  CAS  Google Scholar 

  18. Chen W, Zhang J, Di Y, Wang Z, Fang Q, Cai W (2003) Size controlled Ag nanoparticles within pores of monolithic mesoporous silica by ultrasonic irradiation. Appl Surf Sci 211:280

    Article  CAS  Google Scholar 

  19. Pan AL, Zheng HG, Yang ZP, Liu FX, Ding ZJ, Qian YT (2003) Gamma-irradiation-induced Ag/SiO2 composite films and their optical absorption properties. Mater Res Bull 38:789

    Article  CAS  Google Scholar 

  20. Chen W, Zhang J (2003) Ag nanoparticles hosted in monolithic mesoporous silica by thermal decomposition method. Scripta Mater 49:321–325

    Article  CAS  Google Scholar 

  21. Kumar M, Reddy GB (2010) Effect of atmospheric exposure on the growth of citrate-capped silver nanoparticles. Phys E 42:1940–1943

    Article  CAS  Google Scholar 

  22. Kumar M, Reddy GB (2008) A modified chemical route for synthesis of zirconia thin films having tunable porosity. MRS Proc. 1074E:1074-I10-34

  23. Kumar M, Reddy GB (2011) Effect of sol-age on the surface and optical properties of sol–gel derived mesoporous zirconia thin films. AIP Adv 1:022111

    Article  CAS  Google Scholar 

  24. Born M, Wolf E (1998) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  25. Liaw JW (2006) Analysis of the surface plasmon resonance of a single core-shelled nanocomposite by surface integral equations. Eng Anal Bound Elem 30:734–745

    Article  Google Scholar 

  26. Voshchinnikov NV, Farafonov VG (1993) Optical properties of spheroidal particles. Astrophys Space Sci 204:19–86

    Article  CAS  Google Scholar 

  27. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  28. Hilger A, Tenfelde M, Kreibig U (2001) Silver nanoparticles deposited on dielectric surfaces. Appl Phys B 73:361–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (MK) acknowledges the “Senior Research Fellowship” from Council of Scientific and Industrial Research (HRD Group) India, obtained during the experiments of present work. Authors also acknowledge Mr. V.K. Khanna for TEM imaging and Dr. Deepak Varandani for AFM imaging of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Reddy, G.B. Stability-Inspired Entrapment of Ag Nanoparticles in ZrO2 Thin films. Plasmonics 11, 261–267 (2016). https://doi.org/10.1007/s11468-015-0044-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0044-x

Keywords

Navigation