Skip to main content
Log in

A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a plasmonic device consisting of a concentric ring grating acting as an efficient tool for directional launching and detection of surface plasmon polaritons (SPPs). Numerical simulations and optical characterizations are used to study the fabricated structured gold surface. We demonstrate that this circularly symmetrical plasmonic device provides an efficient interface between free space radiation and SPPs. This structure offers an excellent platform for the study of hybrid plasmonics in general and of plasmon-emitter couplings in particular, such as those occurring when exciting dye molecules placed inside the ring. As illustrated in this work, an interesting property of the device is that the position of excitation determines the direction of propagation of the SPPs, providing a flexible mean of studying their interactions with molecules or dipole-like emitters placed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tame MS, McEnery KR, Özdemir ŞK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340

    Article  CAS  Google Scholar 

  2. Choy JT, Bulu I, Hausmann BJM, Janitz E, Huang I-C, Lončar M (2013) Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett 103:161101

    Article  Google Scholar 

  3. Barthes J, Bouhelier A, Dereux A, des Francs GC des (2013) Coupling of a dipolar emitter into one-dimensional surface plasmon. Sci Rep 3:2734

  4. López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328

    Article  Google Scholar 

  5. Huang X, Brongersma ML (2013) Compact aperiodic metallic groove arrays for unidirectional launching of surface plasmons. Nano Lett 13:5420–5424

    Article  CAS  Google Scholar 

  6. Krenn JR, Weeber JC (2004) Surface plasmon polaritons in metal stripes and wires. Philos Trans R Soc Math Phys Eng Sci 362:739–756

    Article  CAS  Google Scholar 

  7. Hartmann N, Piredda G, Berthelot J, Colas des Francs G, Bouhelier A, Hartschuh A (2012) Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter. Nano Lett 12:177–181

    Article  CAS  Google Scholar 

  8. Sanders AW, Routenberg DA, Wiley BJ, Xia Y, Dufresne ER, Reed MA (2006) Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett 6:1822–1826

    Article  CAS  Google Scholar 

  9. Weeber J-C, Dereux A, Girard C, Krenn JR, Goudonnet J-P (1999) Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys Rev B 60:9061

    Article  CAS  Google Scholar 

  10. Stepanov AL, Krenn JR, Ditlbacher H, Hohenau A, Drezet A, Steinberger B, Leitner A, Aussenegg FR (2005) Quantitative analysis of surface plasmon interaction with silver nanoparticles. Opt Lett 30:1524–1526

    Article  Google Scholar 

  11. Liu T, Shen Y, Shin W, Zhu Q, Fan S, Jin C (2014) Dislocated Double-Layer Metal Gratings: An Efficient Unidirectional Coupler. Nano Lett 140618121255001

  12. Di Martino G, Sonnefraud Y, Kéna-Cohen S, Tame M, Özdemir ŞK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett 12:2504–2508

    Article  Google Scholar 

  13. Venugopalan P, Zhang Q, Li X, Kuipers L, Gu M (2014) Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens. Opt Lett 39:5744

    Article  Google Scholar 

  14. Kumar P, Tripathi VK, Kumar A, Shao X (2015) Launching focused surface plasmon in circular metallic grating. J Appl Phys 117:013103

    Article  Google Scholar 

  15. Chen J, Sun C, Li H, Gong Q (2014) Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale 6:13487–13493

    Article  CAS  Google Scholar 

  16. Kéna-Cohen S, Stavrinou PN, Bradley DDC, Maier SA (2013) Confined surface plasmon–polariton amplifiers. Nano Lett 13:1323–1329

    Article  Google Scholar 

  17. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9:4320–4325

    Article  CAS  Google Scholar 

  18. Mahboub O, Palacios SC, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Optimization of bull’s eye structures for transmission enhancement. Opt Express 18:11292–11299

    Article  CAS  Google Scholar 

  19. Aouani H, Mahboub O, Devaux E, Rigneault H, Ebbesen TW, Wenger J (2011) Plasmonic antennas for directional sorting of fluorescence emission. Nano Lett 11:2400–2406

    Article  CAS  Google Scholar 

  20. Wang D, Yang T, Crozier KB (2011) Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. Opt Express 19:2148–2157

    Article  Google Scholar 

  21. Kinzel EC, Srisungsitthisunti P, Li Y, Raman A, Xu X (2010) Extraordinary transmission from high-gain nanoaperture antennas. Appl Phys Lett 96:211116

    Article  Google Scholar 

  22. Brokmann X, Coolen L, Hermier J-P, Dahan M (2005) Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface. Chem Phys 318:91–98

    Article  CAS  Google Scholar 

  23. Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio J-M, Hermier J-P, Maître A (2010) Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. Opt Express 18:7440–7455

    Article  CAS  Google Scholar 

  24. Valencia CI, Méndez ER, Mendoza BS (2003) Second-harmonic generation in the scattering of light by two-dimensional particles. JOSA B 20:2150–2161

    Article  CAS  Google Scholar 

  25. Maradudin AA, Michel T, McGurn AR, Méndez ER (1990) Enhanced backscattering of light from a random grating. Ann Phys 203:255–307

    Article  CAS  Google Scholar 

  26. De la Cruz S, Méndez ER, Macías D, Salas-Montiel R, Adam PM (2012) Compact surface structures for the efficient excitation of surface plasmon-polaritons. Phys Status Solidi B 249:1178–1187

    Article  Google Scholar 

  27. De la Cruz S (2013) Diseño de estructuras plasmónicas. CICESE

  28. Choudhury SD, Badugu R, Ray K, Lakowicz JR (2012) Silver-gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C Nanomater Int 116:5042–5048

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Bruyant and G. Colas des Francs for the helpful discussions, as well as S. Kostcheev for the technical support for the fabrication. N.R. would like to thank the French Ministry of Education for her PhD grant. The authors thank the region Champagne-Ardenne platform Nanomat for fabrication and characterization facilities. C.C. and S.B. would like to acknowledge the financial support by the CNRS PEPS project “InteQ.” C.C. thanks the partial funding by the Champagne-Ardenne region via the project “NanoGain” and S.B., R. S.-M., and C.C. thank the partial support by the French ANR via the project “SINPHONIE.” The work of S. de la C. and E.R.M. was supported in part by CONACYT, under grant 180654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Couteau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahbany, N., Geng, W., Salas-Montiel, R. et al. A Concentric Plasmonic Platform for the Efficient Excitation of Surface Plasmon Polaritons. Plasmonics 11, 175–182 (2016). https://doi.org/10.1007/s11468-015-0032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0032-1

Keywords

Navigation