Skip to main content
Log in

Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The strong focusing and field enhancement effects of a metal nanofinger surrounded by multiple concentric rings are investigated through both COMSOL Multiphysics and finite-difference time-domain (FDTD) simulations. The aspect ratio of the nanofinger is the main parameter determining the full width at half maximum (FWHM) and the strong local field enhancement. The optimal values of the aspect ratio for the maximal enhancement and minimal FWHM are close to 1.8 and 3.0, respectively. Furthermore, the optimal aspect ratio of maximal field enhancement intensity decreases linearly with the incident wavelength, and the optimal aspect ratio of minimal FWHM increases linearly with the metal film thickness. The nanofinger fabricated with the focused ion beam method has a small conical angle, which results in a higher field enhancement and smaller focal spot size than straight sidewall finger. However, the shorter finger defect deteriorates FWHM and field enhancement because of the bias from the optimal aspect ratio value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lemke C, Schneider C, Leißner T, Bayer D, Radke JW, Fischer A, Melchior P, Evlyukhin AB, Chichkov BN, Reinhardt C, Bauer M, Aeschlimann M (2013) Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices. Nano Lett 13(3):1053–1058. doi:10.1021/nl3042849

    Article  CAS  Google Scholar 

  2. Gjonaj B, Aulbach J, Johnson PM, Mosk AP, Kuipers L, Lagendijk A (2013) Focusing and scanning microscopy with propagating surface plasmons. Phys Rev Lett 110(26680426). doi:10.1103/PhysRevLett.110.266804

  3. Yuan GH, Yuan XC, Bu J, Tan PS, Wang Q (2011) Manipulation of surface plasmon polaritons by phase modulation of incident light. Opt Express 19(1):224–229. doi:10.1364/OE.19.000224

    Article  CAS  Google Scholar 

  4. Neacsu CC, Berweger S, Olmon RL, Saraf LV, Ropers C, Raschke MB (2010) Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10(2):592–596. doi:10.1021/nl903574a

    Article  CAS  Google Scholar 

  5. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  6. Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y (2013) Two-surface-plasmon-polariton-absorption based nanolithography. Appl Phys Lett 102(0631136). doi:10.1063/1.4792591

  7. Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91(23):233901. doi:10.1103/PhysRevLett.91.233901

    Article  CAS  Google Scholar 

  8. Machavariani G, Lumer Y, Moshe I, Meir A, Jacket S (2007) Efficient extracavity generation of radially and azimuthally polarized beams. Opt Lett 32(11):1468–1470. doi:10.1364/OL.32.001468

    Article  CAS  Google Scholar 

  9. TIDWELL SC, FORD DH, KIMURA WD (1990) Generating radially polarized beams interferometrically. Appl Opt 29(15):2234–2239

    Article  CAS  Google Scholar 

  10. Chen W, Abeysinghe DC, Nelson RL, Zhan Q (2009) Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Lett 9(12):4320–4325. doi:10.1021/nl903145p

    Article  CAS  Google Scholar 

  11. Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X (2014) Super-resolution long-depth focusing by radially polarized light irradiation through plasmonic lens in optical meso-field. Plasmonics 9(1):55–60. doi:10.1007/s11468-013-9597-8

    Article  CAS  Google Scholar 

  12. Ji J, Meng Y, Zhang J (2015) Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination. J Nanophotonics 9(093794). doi:10.1117/1.JNP.9.093794

  13. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep-Uk 1. doi:10.1038/srep00175

  14. Steele JM, Liu ZW, Wang Y, Zhang X (2006) Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt Express 14(12):5664–5670. doi:10.1364/OE.14.005664

    Article  Google Scholar 

  15. Raether H Surface (1988) Plasmons on smooth and rough surfaces and on gratings Springer, Berlin Heidelberg

  16. Ditlbacher H, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2003) Efficiency of local light-plasmon coupling. Appl Phys Lett 83(18):3665–3667. doi:10.1063/1.1625107

    Article  CAS  Google Scholar 

  17. Chen J, Zhu L, Wang F, Ma W (2013) An integrated multistage nanofocusing system. Plasmonics 8(4):1559–1565. doi:10.1007/s11468-013-9572-4

    Article  CAS  Google Scholar 

  18. Chen J (2013) Numerical study of a nonplanar two-stage surface plasmonic lens illuminated by a radially polarized beam. Plasmonics 8(2):931–936. doi:10.1007/s11468-013-9492-3

    Article  CAS  Google Scholar 

  19. COGGON JH (1971) Electromagnetic and electrical modeling by finite element method. Geophysics 36(1):132. doi:10.1190/1.1440151

    Article  Google Scholar 

  20. Sullivan DM (2013) Electromagnetic simulation using the FDTD method. Wiley

  21. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science \& Business Media

  22. Martin YC, Hamann HF, Wickramasinghe HK (2001) Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys 89(10):5774–5778. doi:10.1063/1.1354655

    Article  CAS  Google Scholar 

  23. Goncharenko AV, Dvoynenko MM, Chang HC, Wang JK (2006) Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy. Appl Phys Lett. 88(10410110). doi:10.1063/1.2183362

  24. Goncharenko AV, Chang H, Wang J (2007) Electric near-field enhancing properties of a finite-size metal conical nano-tip. Ultramicroscopy 107(2–3):151–157. doi:10.1016/j.ultramic.2006.06.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (NSFC) with grant no. 91123033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Meng, Y., Sun, L. et al. Strong Focusing of Plasmonic Lens with Nanofinger and Multiple Concentric Rings Under Radially Polarized Illumination. Plasmonics 11, 23–27 (2016). https://doi.org/10.1007/s11468-015-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0015-2

Keywords

Navigation