, Volume 10, Issue 6, pp 1889–1894 | Cite as

Fabricating a Long-Range Ordered 3D Bimetallic Nanoassembly with Edge-On Substrate for Highly Sensitive SERS Sensing of Escherichia coli Bacteria

  • HaoWei Jia
  • WeiQiang Wang
  • Li Qiu
  • NanNan Zhang
  • HongHua Ge
  • Jin WangEmail author


Long-range ordered three-dimensional (3D) nanoassembly of bimetallic nanorods has been fabricated on coffee ring formed on the silicon substrate. Two kinds of arrangements, i.e., axial alignment of the nanorods perpendicular and parallel to the substrate, can be observed in the nanoassembly. Moreover, facet blocking of the nanorods can efficiently yield 3D nanoassembly with edge-on substrate. The long-range ordered 3D nanoassembly with edge-on substrate can provide highly reproducible and significant Raman-enhanced signal in contrast with random aggregated substrate. The representative vibrational band of Escherichia coli bacteria could be efficiently amplified by aid of the substrate due to strong field enhancement effects arising from the superstructure. Furthermore, vancomycin-coated nanoassembly with edge-on substrate as a robust nanosensor can efficiently capture E. coli bacteria and improve stability of the nanosensor for assay of E. coli bacteria.


Bimetallic nanorods Assembly SERS E. coli bacteria 



This work is supported by MOST-TEKES China-Finland International Cooperation Project (Grant No 2014DFG42290) and the National Natural Science Foundation of China (Grant Nos. 31270770, 31400641, and 21077106)

Supplementary material

11468_2015_12_MOESM1_ESM.doc (804 kb)
ESM 1 (DOC 803 kb)


  1. 1.
    Lin DH, Qin TQ, Wang YQ, Sun XY, Chen LX (2014) Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl Mater Interfaces 6(2):1320–1329CrossRefGoogle Scholar
  2. 2.
    Chang JB, Mao S, Zhang Y, Cui SM, Zhou GH, Wu XG, Yang CH, Chen JH (2013) Ultrasonic assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9):3620–3626CrossRefGoogle Scholar
  3. 3.
    Chen YN, Michael ZP, Kotchey GP, Zhao Y, Star A (2014) Electronic detection of bacteria using holey reduced graphene oxide. ACS Appl Mater Interfaces 6(6):3805–3810CrossRefGoogle Scholar
  4. 4.
    Edgar R, Mckinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. PNAS 103(13):4841–4845CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Ye MQ, Chao QG, Jia NQ, Ge Y, Shen HB (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagentic separation in food samples. J Agric Food Chem 57(2):517–524CrossRefGoogle Scholar
  6. 6.
    Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological application of gold nanoparticles. Chem Soc Rev 37(9):1896–1908CrossRefGoogle Scholar
  7. 7.
    Singh AK, Senapati D, Wang SG, Griffin J, Neely A, Candice P, Naylor KM, Varisli B, Kalluri JR, Ray PC (2009) Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 3(7):1906–1912CrossRefGoogle Scholar
  8. 8.
    Miranda OR, Li XN, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653CrossRefGoogle Scholar
  9. 9.
    Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109(1):312–320CrossRefGoogle Scholar
  10. 10.
    Liu TY, Tsai KT, Wang HH, Chen Y, Chen YH, Chao YC, Chang HH, Lin CH, Wang JK, Wang YL (2011) Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun 2: 538 (1–7)Google Scholar
  11. 11.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  12. 12.
    Smitha SL, Gopchandran KG, Ravindran TR, Prasad VS (2011) Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 22(26): 265705 (1–7)Google Scholar
  13. 13.
    Li DD, Zheng GC, Ding XF, Wang J, Liu JH, Kong LT (2013) DNA functionalized gold nanorods/nanoplates assembly as sensitive LSPR-based sensor for label-free detection of mercury ions. Colloids Surf B:Biointerfaces 110:485–488CrossRefGoogle Scholar
  14. 14.
    Xu LG, Kuang H, Xu CL, Ma W, Wang LB, Kotov NA (2012) Regiospecific plasmonic assemblies for in-situ Raman spectroscopy in live cells. J Am Chem Soc 134(3):1699–1709CrossRefGoogle Scholar
  15. 15.
    Nepal D, Drummy LF, Biswas S, Park KW, Vaia RA (2013) Large scale solution assembly of quantum dots-gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano 7(10):9064–9074CrossRefGoogle Scholar
  16. 16.
    Bryant GW, Garcia J, de Abajo F, Aizpurua J (2008) Mapping the plasmon resonance of metallic nanoantennas. Nano Lett 8(2):631–636CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Zhang S, Lin MS (2014) DNA embedded Au-Ag core-shell nanoparticles assembled on silicon as a reliable SERS substrate. Analyst 139(9):2207–2213CrossRefGoogle Scholar
  18. 18.
    Li M, Zhang ZS, Zhang X, Li KY, Yu XF (2008) Optical properties of Au/Ag core/shell nanoshuttles. Opt Express 16(18):14288–14293CrossRefGoogle Scholar
  19. 19.
    Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360):308–311CrossRefGoogle Scholar
  20. 20.
    Esenturk EN, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40(1):86–91CrossRefGoogle Scholar
  21. 21.
    Javis RM, Goodacre R (2004) Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76(1):40–47CrossRefGoogle Scholar
  22. 22.
    Rothschild KJ, Andrew JR, Degrip WJ, Stanely HE (1976) Opsin structure probed by Raman spectroscopy of photoreceptor membranes. Science 191(4232):1176–1178CrossRefGoogle Scholar
  23. 23.
    Susi H, Sampugna J, Hampson JW, Ard JS (1979) Laser-Raman investigation of phospholipid-polypeptide interactions in model membranes. Biochemistry 18(2):297–301CrossRefGoogle Scholar
  24. 24.
    Ndieyira JW, Watari M, Barrera AD, Zhou D, Voqtli M, Batchelor M, Cooper MA, Strunz T, Horton MA, Abell C, Rayment T, Aeppli G, McKendry RA (2008) Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol 3(11):691–696CrossRefGoogle Scholar
  25. 25.
    Sivanesan A, Witkowska E, Adamkiewicz W, Dziewit L, Kaminska A, Waluk J (2014) Nanostructured silver-gold bimetallic SERS substrate for selective identification of bacteria in human blood. Analyst 139(5):1037–1043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • HaoWei Jia
    • 1
  • WeiQiang Wang
    • 2
  • Li Qiu
    • 1
  • NanNan Zhang
    • 2
    • 3
  • HongHua Ge
    • 2
  • Jin Wang
    • 1
    Email author
  1. 1.Institute of Intelligent MachinesChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.Institute of Health ScienceAnHui UniversityHefeiPeople’s Republic of China
  3. 3.Institute of Life ScienceAnHui UniversityHefeiPeople’s Republic of China

Personalised recommendations