, Volume 10, Issue 3, pp 681–690 | Cite as

Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing

  • M. P. Navas
  • R. K. SoniEmail author


Localized surface plasmon resonance (LSPR) wavelength of Ag, Au, and Cu nanoparticles (NPs) falls in visible region and is highly sensitive to size, shape, and surrounding medium. Refractive index sensitivity (RIS) and figure-of-merit (FOM) of Ag, Au, and Cu are analyzed for different particle sizes using the quasi-static Mie theory. The simulation results reveal that RIS and FOM of Ag NPs are higher than Au and Cu NPs. Bimetallic Ag-Au and Ag-Cu core-shell NPs exhibit two resonance peaks, corresponding to hybridization of core and nanoshell plasmon modes, are investigated for simultaneous sensing in two widely separated wavelength regions. A sequential laser ablation method is used to generate bimetallic Ag-Au and Ag-Cu core-shell NPs in liquid medium, and their LSPR peak shift and broadening are monitored in different refractive index liquids. Laser-generated Ag-Au NPs with Au shell of 1–2 nm show optimum RIS and FOM in lower-wavelength Ag plasmon channel. The Au shell not only improves the chemical stability of Ag NPs but also increases the index sensitivity at an optimum thickness. Further, in higher-wavelength Au plasmon channel, both RIS and FOM increase with shell thickness, but their values are lower than those in Ag plasmon channel.


Refractive index sensing Pulsed laser ablation in liquid Ag nanoparticles Bimetallic core-shell nanoparticles Plasmon hybridization 


  1. 1.
    Petryayeva E, Krul UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706:8–24CrossRefGoogle Scholar
  2. 2.
    Zhao Q, Duan R, Yuan J, Quan Y, Yang H, Xi M (2014) A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array. Int J Nanomed 9:1097–1104Google Scholar
  3. 3.
    Hong Y, Huh YM, Yoon DS, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J Nanomat 2012:759830Google Scholar
  4. 4.
    Hong Y, Ku M, Lee E, Suh JS, Huh YM, Yoon DS, Yang J (2013) Localized surface plasmon resonance based nanobiosensor for biomarker detection of invasive cancer cells. J Biomed Opt 19:051202CrossRefGoogle Scholar
  5. 5.
    Zhang X, Feng S, Zhang J, Zhai T, Liu H, Pang Z (2012) Sensors based on plasmonic photonic coupling in metallic photonic crystals. Sensors 12:12082–12097CrossRefGoogle Scholar
  6. 6.
    Zhou C (2012) Localized surface plasmonic resonance study of silver nanocube for photonic crystal fiber sensor. Opt Lasers Eng 50:1592–1595CrossRefGoogle Scholar
  7. 7.
    Zayatsa AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314CrossRefGoogle Scholar
  8. 8.
    Zeng S, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506CrossRefGoogle Scholar
  9. 9.
    Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900CrossRefGoogle Scholar
  10. 10.
    Miller MM, Lazarides AA (2005) Sensitivity of metal NP surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565CrossRefGoogle Scholar
  11. 11.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  12. 12.
    Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold NPs. Langmuir 24:5233–5237CrossRefGoogle Scholar
  13. 13.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensor. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  14. 14.
    Katyal J, Soni RK (2013) Size- and shape-dependent plasmonic properties of aluminium nanoparticles for nanosensing applications. J Mod Opt 60:1717–1728CrossRefGoogle Scholar
  15. 15.
    Langhammer C, Yuan Z, Zoric I, Kasemo B (2006) Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett 6:833–838CrossRefGoogle Scholar
  16. 16.
    Zoric I, Zach M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5:2535–2546CrossRefGoogle Scholar
  17. 17.
    Pirzadeh Z, Pakizeh T, Miljkovic V, Langhammer C, Dmitriev A (2014) Plasmon−interband coupling in nickel nanoantennas. ACS Photonics 1:158–162CrossRefGoogle Scholar
  18. 18.
    Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179CrossRefGoogle Scholar
  19. 19.
    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition. J Phys Chem B110:19220–19225CrossRefGoogle Scholar
  20. 20.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRefGoogle Scholar
  21. 21.
    Park H, Tsutsumi H, Mihara H (2013) Cell penetration and cell-selective drug delivery using α-helix peptides conjugated with gold nanoparticles. Biomater 34:4872–4879CrossRefGoogle Scholar
  22. 22.
    Shi W, Casas J, Venkataramasubramani M, Tang L (2012) Synthesis and characterization of gold nanoparticles with plasmon absorbance wavelength tunable from visible to near infrared region. ISRN nanomater 2012:659043CrossRefGoogle Scholar
  23. 23.
    Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and AuAg alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23:4098–4101CrossRefGoogle Scholar
  24. 24.
    Noguez C (2007) Surface plasmons on metal NPs: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  25. 25.
    Lee KC, Lin SJ, Lin CH, Tsai CS, Lu YJ (2008) Size effect of Ag NPs on surface plasmon resonance. Surf Coat Technol 202:5339–5342CrossRefGoogle Scholar
  26. 26.
    Yong Z, Lei DY, Lam CH, Wang Y (2014) Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles. Nanoscale Res Lett 9:187CrossRefGoogle Scholar
  27. 27.
    Katyal J, Soni RK (2014) Localized surface plasmon resonance and refractive index sensitivity of metal–dielectric–metal multilayered nanostructures. Plasmonics. doi: 10.1007/s11468-014-9728-x Google Scholar
  28. 28.
    Navas MP, Soni RK (2014) Laser generated Ag and Ag–Au composite nanoparticles for refractive index sensor. Appl Phys A. doi: 10.1007/s00339-014-8460-x Google Scholar
  29. 29.
    Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22:1333–1353CrossRefGoogle Scholar
  30. 30.
    Liu P, Cui H, Wang CX, Yang GW (2010) From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys Chem Chem Phys 12:3942–3952CrossRefGoogle Scholar
  31. 31.
    Singh R, Soni RK (2013) Aluminium-gold nanocomposites prepared by pulsed laser ablation. J Nanosci Lett 3:11CrossRefGoogle Scholar
  32. 32.
    Sajti CL, Sattari R, Chichkov BN, Barcikowski S (2010) Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C 114:2421–2427CrossRefGoogle Scholar
  33. 33.
    Nikolov AS, Nedyalkov NN, Nikov RG, Atanasov PA, Alexandrov MT, Karashanova DB (2012) Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water. Appl Phys A 109:315–322CrossRefGoogle Scholar
  34. 34.
    Li S, Zhao Y, Jiang Y, Zhang Y (2014) Preparation and properties of noble metal core/shell nanostructures prepared by excimer laser ablation in liquid solutions. J Laser Appl 26:022001CrossRefGoogle Scholar
  35. 35.
    Singh R, Soni RK (2014) Plasmonics properties of trimetallic Al@Al2O3@Ag@Au and Al@Al2O3@AuAg nanostructures. Appl Phys A. doi: 10.1007/s00339-014-8455-7 Google Scholar
  36. 36.
    Han H, Fang Y, Li Z, Xu H (2008) Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Appl Phys Lett 92:023116CrossRefGoogle Scholar
  37. 37.
    Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon inAu/Ag core/shell compound nanoparticles. Plasmonics 7:509–513CrossRefGoogle Scholar
  38. 38.
    Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094CrossRefGoogle Scholar
  39. 39.
    Myroshnychenko V, Fernandez JR, Santos IP, Funston AM, Novo C, Mulvaney P, Marzan LML, Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805CrossRefGoogle Scholar
  40. 40.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  41. 41.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  42. 42.
    Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383CrossRefGoogle Scholar
  43. 43.
    Wu Y, Nordlander P (2006) Plasmon hybridization in nanoshells with a nonconcentric core. J Chem Phys 125:124708CrossRefGoogle Scholar
  44. 44.
    Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au-Ag core-shell structure nanowires. Nanoscale Res Lett 4:077–091Google Scholar
  45. 45.
    Pela-Rodriguez O, Pal U (2011) Au/Ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3:3609CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations