Skip to main content
Log in

Topology Optimization-Based Computational Design Methodology for Surface Plasmon Polaritons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper presents the topology optimization-based computational design methodology for nanostructures in surface plasmon polaritons. Using the proposed method, nanostructures can be designed solely based on the user’s desired performance specification for the surface plasmon polaritons. This topology optimization-based computational design methodology is implemented based on the material interpolation with hybrid formulation of logarithmic and power law approaches, to mimic the metal surface with exponential decay of the electromagnetic field. The constructed computational design problem is analyzed using the continuous adjoint method, and the filter and projection techniques are utilized to ensure the minimum length scale in the obtained nanostructures. The outlined design methodology is used to investigate the nanostructures for localized surface plasmonic resonances, extraordinary optical transmission, and surface plasmonic cloaking, respectively. For localized surface plasmonic resonances and extraordinary optical transmission, the metallic nanostructures are designed with spectra peaks at the prescribed wavelengths and the shift of the spectra peak is controlled by solving the computational design problem corresponding to a different incident wavelength; for surface plasmonic cloaking, the cloak covered at a curved metal-dielectric interface is designed to bound the surface plasmon polariton at the interface and remove the radiation, where the conventional simple isotropic dielectric readily available in nature is used instead of the material possessing gradient electromagnetic properties with challenges on realization for optical frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:2

    Article  Google Scholar 

  2. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science + Business Media LCC, New York

    Google Scholar 

  4. Zayats AV, Smolyaninov II, Maradudin AA (2004) Nano-optics of surface plasmon polaritons. Phys Reports 408:131–313

    Article  Google Scholar 

  5. Zia R, Selker MD, Brongersma ML (2005) Leaky and bound modes of surface plasmon waveguides. Phys Rev B 71:165–431

    Article  Google Scholar 

  6. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  7. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  8. Liu Y, Zentgraf T, Bartal G, Zhang X (2010) Transformational plasmon optics. Nano Lett 10:1991–1997

    Article  CAS  Google Scholar 

  9. Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal FJ (1985) Transformation optics for plasmonics. Nano Lett 10

  10. Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,. Science 297:1536

    Article  CAS  Google Scholar 

  11. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  12. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 227:1078

    Article  Google Scholar 

  13. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62:R16356

    Article  CAS  Google Scholar 

  14. Ricard D, Roussignol P, Flytzanis C (1985) Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 10:511

    Article  CAS  Google Scholar 

  15. Novotny L, Bain RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79:645

    Article  CAS  Google Scholar 

  16. Miao X, Lin LY (2007) Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au array, nanoparticle. Opt Lett 32:295–297

    Article  Google Scholar 

  17. Aizprurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, Garcia de Agajo FG (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401

    Article  Google Scholar 

  18. Garcia de Abajo FJ (2007) Light scattering by particle and hole arrays. Rev Mod Phys 79:1267–1290

    Article  CAS  Google Scholar 

  19. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  20. Engheta N (2007) Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317:1698–1702

    Article  CAS  Google Scholar 

  21. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  22. Andkjær J, Sigmund O (2011) Topology optimized low-contrast all-dielectric optical cloak. Appl Phys Lett 98:021112

    Article  Google Scholar 

  23. Andkjær J, Mortensen NA, Sigmund O (1106) Towards all-dielectric, polarization-independent optical cloaks. Appl Phys Lett 100(10)

  24. Fujii G, Watanabe H, Yamada T, Ueta T, Mizuno M (2013) Level set based topology optimization for optical cloaks. Appl Phys Lett 102:251106

    Article  Google Scholar 

  25. Noghani MT, Samiei MHV (2013) Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics 8:1155– 1168

    Article  Google Scholar 

  26. Pellegrini G, Mattei G (2014) High-performance magneto-optic surface plasmon resonance sensor design: an optimization approach. Plasmonics . doi:10.1007/s11468-014-9764-6.

  27. Wang H, An Z, Qu C, Xiao S, Zhou L, Komiyama S, Lu W, Shen X, Chu PK (2011) Optimization of optoelectronic plasmonic structures. Plasmonics 6:319–325

    Article  CAS  Google Scholar 

  28. Andkjær J, Nishiwaki S, Nomura T, Sigmund O (2010) Topology optimization of grating couplers for the efficient excitation of surface plasmons. J Opt Soc Am B 27:1828–1832

    Article  Google Scholar 

  29. Bendsoe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, Berlin

    Google Scholar 

  30. Borrvall T, Petersson J (2003) Topology optimization of fluid in Stokes flow. Int J Numer Meth Fluids 41:77–107

    Article  Google Scholar 

  31. Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Meth Engng 71:1261– 1296

    Article  Google Scholar 

  32. Sigmund O, Hougaard KG (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904

    Article  Google Scholar 

  33. Duhring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J. Sound Vibration 317:557–575

    Article  Google Scholar 

  34. Akl W, El-Sabbagh A, Al-Mitani K (2008) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46:2060–2074

    Article  Google Scholar 

  35. Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31:251–259

    Article  Google Scholar 

  36. Zhou S, Li W, Sun G, Li Q (2010) A level-set procedure for the design of electromagnetic metamaterials. Optics Express 18:6693–6702

    Article  CAS  Google Scholar 

  37. Zhou S, Li W, Chen Y, Sun G, Li Q (2011) Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Materialia 59:2624–2636

    Article  Google Scholar 

  38. Otomori M, Yamada T, Izui K, Nishiwaki S, Andkjær J (2012) A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials . Comput Methods Appl Mech Engrg 237-240:192–211

    Article  Google Scholar 

  39. Sigmund O (1996) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids and Struct 31:2313–2329

    Article  Google Scholar 

  40. Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier-Stokes flows. J Comput Phys 230:6688–6708

    Article  CAS  Google Scholar 

  41. Deng Y, Liu Z, Wu J, Wu Y (2013) Topology optimization of steady Navier-Stokes flow with body force. Comput Methods Appl Mech Eng 255:306–321

    Article  Google Scholar 

  42. Deng Y, Liu Z, Liu Y, Wu Y (2014) Combination of topology optimization and optimal control method. J Comput Phys 257:374–399

    Article  Google Scholar 

  43. Lazarov B, Sigmund O (2010) Filters in topology optimization based on Helmholtz type differential equations. Int J Numer Methods Eng . doi:10.1002/nme.3072

  44. Jin J (2002) The finite element method in electromagnetics. Wiley, New York

    Google Scholar 

  45. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43:767–84

    Article  Google Scholar 

  46. Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside funtions. Struct Multidisc Optim 41:495–505

    Article  Google Scholar 

  47. Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238– 254

    Article  Google Scholar 

  48. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424

    Article  Google Scholar 

  49. Kawamoto A , Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S. (2010) Heaviside projection based topology optimization by a pde-filtered scalar function. Struct Multidisc Optim. doi:10.1007/s00158-010-0562-2

  50. Diaz AR, Sigmund O (2010) A topology optimization method for design of negative permeability metamaterials. Suct Multidisc Optim 41:163–177

    Article  Google Scholar 

  51. Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys. Rev. B 6:4370–4379

    Article  CAS  Google Scholar 

  52. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, Berlin

    Google Scholar 

  53. Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow, Turbulence and Combustion 65:393–415

    Article  Google Scholar 

  54. Mohammadi B (2010) Pironneau O. Applied shape optimization for fluids OXFORD

  55. Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Meth Engng 24:359–373

    Article  Google Scholar 

  56. http://www.comsol.com

  57. Olesen LB, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to flow, steady-state Navier-Stokes. Int J Numer Meth Engng 65:975–1001

    Article  Google Scholar 

  58. Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452:728–731

    Article  CAS  Google Scholar 

  59. Garcia de Abajo FJ (2007) Light scattering by particle and hole arrays. Rev Modern Phys 79:1267–1290

    Article  CAS  Google Scholar 

  60. Sødergaard T , Bozhevolnyi SI, Novikov SM, Beermann J, Devaux E, Ebbesen TW (2010) Extraordinary optical transmission enhanced by nanofocusing. Nano Lett 10:3123–3128

    Article  Google Scholar 

  61. Liu H, Li T, Wang QJ, Zhu ZH, Wang SM, Li JQ, Zhu SN, Zhu YY, Zhang X (2009) Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators. Phys Rev B 79:024– 304

    Google Scholar 

  62. García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90:213–901

    Article  Google Scholar 

  63. Wang LL, Ren XF, Yang R, Guo GC, Guo GP (2009) Transmission of doughnut light through a bulls eye structure. Appl Phys Lett 95:111111–111113

    Article  Google Scholar 

  64. Cui YX, He S, Okuno Y (2008) Giant optical transmission through a metallic nanoslit achieved by the optimization of the groove periodicity and other parameters. IEEE

  65. Popov E, Nevière M, Fehrembach AL, Bonod N (2005) Optimization of plasmon excitation at structured apertures. Apploed Optics 44:6141–6154

    Article  CAS  Google Scholar 

  66. Sorger VJ, Oulton RF, Yao J, Bartal G, Zhang X (2009) Plasmonic Fabry-Pérot Nanocavity. Nano Letters 9-10:3489–3493

    Article  Google Scholar 

  67. Astilean S, Lalanne P, Palamaru M (2000) Light transmission through metallic channels much smaller than the wavelength. Opt Commun 175:265–273

    Article  CAS  Google Scholar 

  68. Takakura Y (2001) Optical resonance in a narrow slit in a thick metallic screen. Phys Rev Lett 86:5601–5603

    Article  CAS  Google Scholar 

  69. Yang F, Sambles JR (2002) Resonant transmission of microwaves through a narrow metallic slit. Phys Rev Lett 89:063901

    Article  Google Scholar 

  70. Cai L, Li G, Wang Z, Xu A (2010) Interference and horizontal Fabry-Pérot resonance on extraordinary transmission through a metallic nanoslit surrounded by grooves. Opt Lett 35:127– 129

    Article  Google Scholar 

  71. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312:1780

    Article  CAS  Google Scholar 

  72. Leonhardt U (2006) Optical conformal mapping. Science 312:1777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor K. Svanberg for supplying the MMA codes. This work is supported by the National Natural Science Foundation of China (Nos. 51405465, 51275504, 51205381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Deng.

Appendix

Appendix

The details on deriving the adjoint equations and derivative of the computational design problem in Eq. 9 are presented as follows. According to the Lagrangian multiplier method, the augmented Lagrangian functional corresponding to the variational problem in Eq. 9 can be introduced as

$$ \begin{array}{ll} \hat{J} = & \displaystyle{\int}_{\Omega} A\left(H_{zs},\nabla H_{zs}, \rho_{fp}; \rho\right)\,\mathrm{d}{\Omega} + {\int}_{\partial{\Omega}} B\left(H_{zs}\right)\,\mathrm{d}{\Gamma} \\ & + {\Phi}\left(H_{zs},\nabla H_{zs}, \rho_{fp}; \rho\right) + {\Psi}\left(\rho_{f},\nabla \rho_{f}; \rho\right) \end{array} $$
(23)

where

$$ \begin{array}{llllll} &{} {\Phi}\left(H_{zs},\nabla H_{zs}, \rho_{fp}; \rho\right) = \displaystyle {\int}_{\Omega} - \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \nabla \tilde{H}_{zs}^{*}\\ & \qquad+ {k_{0}^{2}} \mu_{r} \left(H_{zs}+H_{zi}\right) \tilde{H}_{zs}^{*} + \displaystyle{\int}_{{\Gamma}_{ab}} \bigg(- j k_{0} \sqrt{\epsilon_{r}^{-1} \mu_{r}} H_{zs} \\ & \qquad+ \epsilon_{r}^{-1} \nabla H_{zi} \cdot \mathbf{n} \bigg) \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} + \displaystyle{\int}_{{\Gamma}_{pd}} \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \\ & \qquad\mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} + \displaystyle{\int}_{{\Gamma}_{ps}} \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} \\ & \qquad+ \displaystyle{\int}_{{\Gamma}_{sm}} \epsilon_{r}^{-1} \nabla H_{zi} \cdot \mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} \end{array} $$
(24)
$$\begin{array}{@{}rcl@{}} {\Psi}\left(\rho_{f},\nabla \rho_{f}; \rho\right)&=& {\int}_{\Omega} r^{2} \nabla \rho_{f} \cdot \nabla \tilde{\rho}_{f}^{*} \,\mathrm{d}{\Omega} \\ &&+ {\int}_{\Omega} \rho_{f} \tilde{\rho}_{f}^{*} \,\mathrm{d}{\Omega} - {\int}_{\Omega} \rho \tilde{\rho}_{f}^{*} \,\mathrm{d}{\Omega} \end{array} $$
(25)

\(\tilde {H}_{zs}\) and \(\tilde {\rho }_{f}\) are the adjoint variables of H z s and ρ f , respectively; \(\tilde {H}_{zs}\) satisfies the same periodicity as H z s . H z s and ρ f are distributions in \(\mathcal {H}^{1}\left ({\Omega }\right )\), the first-order Sobolev space defined on Ω; \(\tilde {H}_{zs}\) and \(\tilde {\rho }_{f}\) are distributions in \(\mathcal {H}^{1*}\left ({\Omega }\right )\), the dual space of \(\mathcal {H}^{1}\left ({\Omega }\right )\); ρ is the distribution in \(\mathcal {L}^{2}\left ({\Omega }\right )\), the second-order Lebesgue integrable functional space; for functional space, ∗ represents the dual space; for complex, ∗ represents the conjugate operation. Because of the periodicity of the field expressed by the periodic boundary condition, it is satisfied that

$$ \begin{array}{ll} & \displaystyle{\int}_{{\Gamma}_{pd}} \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} \\ & \qquad + \displaystyle {\int}_{{\Gamma}_{ps}} \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} = 0 \end{array} $$
(26)

Then Eq. 24 can be reduced to be

$$\begin{array}{@{}rcl@{}} & {} {\Phi}\left(H_{zs},\nabla H_{zs}, \rho_{fp}; \rho\right) = \displaystyle{\int}_{\Omega} - \epsilon_{r}^{-1} \nabla \left(H_{zs}+H_{zi}\right) \cdot \nabla \tilde{H}_{zs}^{*}\\ &{\kern-6.2pc} + {k_{0}^{2}} {\upmu}_{r} \left(H_{zs}+H_{zi}\right) \tilde{H}_{zs}^{*} \,\mathrm{d}{\Omega} \\ & \qquad + \displaystyle{\int}_{{\Gamma}_{ab}} \left(- j k_{0} \sqrt{\epsilon_{r}^{-1} {\upmu}_{r}} H_{zs} + \epsilon_{r}^{-1} \nabla H_{zi} \cdot \mathbf{n} \right) \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} \\ & {\kern-2.9pc} + \displaystyle {\int}_{{\Gamma}_{pd}\bigcup{\Gamma}_{ps}\bigcup{\Gamma}_{sm}} \epsilon_{r}^{-1} \nabla H_{zi} \cdot \mathbf{n} \tilde{H}_{zs}^{*} \,\mathrm{d}{\Gamma} \end{array} $$
(27)

From the first-order variational of \(\hat {J}\), one can obtain

$$\begin{array}{@{}rcl@{}} &{}\left<{{\delta\hat{J}}\over{\delta\rho}},\delta\rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}}\,=\,\left<J_{H_{zs}},\delta H_{zs}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Phi}_{H_{zs}},\delta H_{zs}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}}\\ & {\kern-1.7pc}+ \left<J_{\nabla H_{zs}},\nabla \delta H_{zs}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} + \left<{\Phi}_{\nabla H_{zs}},\nabla \delta H_{zs}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} \\ & + \left<J_{\rho_{fp}}{\rho_{fp}}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Phi}_{\rho_{fp}}{\rho_{fp}}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} \\ & {\kern-3.8pc}+ \left<{\Psi}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Psi}_{\nabla\rho_{f}},\nabla \delta \rho_{f}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} \\ & {\kern-7.3pc}+ \left<J_{\rho},\delta \rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}} + \left<{\Psi}_{\rho},\delta \rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}} \end{array} $$
(28)

where 〈⋅,⋅〉 represents the dual pairing between two dual spaces; \(\delta H_{zs}\in \mathcal {H}^{1}\left ({\Omega }\right )\), \(\delta \rho _{f}\in \mathcal {H}^{1}\left ({\Omega }\right )\) and \(\delta \rho \in \mathcal {L}^{2}\left ({\Omega }\right )\) are, respectively, the first-order variational of H z s , ρ f , and ρ; \(\boldsymbol {\mathcal {L}}^{2}\left ({\Omega }\right )\) is the vector valued second-order Lebesgue integrable functional space. According to the Kurash-Kuhn-Tucker condition [52] and setting

$$\begin{array}{@{}rcl@{}} &&{} \left<J_{H_{zs}},\delta H_{zs}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Phi}_{H_{zs}},\delta H_{zs}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} \\ &&+ \left<J_{\nabla H_{zs}},\nabla \delta H_{zs}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} + \left<{\Phi}_{\nabla H_{zs}},\nabla \delta H_{zs}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} = 0 \\ &&\left<J_{\rho_{fp}}{\rho_{fp}}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Phi}_{\rho_{fp}}{\rho_{fp}}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} \\ &&+ \left<{\Psi}_{\rho_{f}},\delta \rho_{f}\right>_{\mathcal{H}^{1*},\mathcal{H}^{1}} + \left<{\Psi}_{\nabla\rho_{f}},\nabla \delta \rho_{f}\right>_{\boldsymbol{\mathcal{L}}^{2*},\boldsymbol{\mathcal{L}}^{2}} = 0 \end{array} $$
(29)

the adjoint equations of Eqs. 1 and 6 in weak forms can be obtained as follows:

$$\begin{array}{@{}rcl@{}} &&{} \displaystyle {\int}_{\Omega} - \epsilon_{r}^{-1} \nabla \delta H_{zs} \cdot \nabla \tilde{H}_{zs}^{*} \\ && + \bigg({k_{0}^{2}} {\upmu}_{r} \tilde{H}_{zs}^{*} + {\partial A \over \partial H_{zs}} - \nabla \cdot {\partial A \over\partial \nabla H_{zs}}\bigg) \delta H_{zs} \,\mathrm{d}{\Omega}\\ &&+ {\int}_{{\Gamma}_{ab}} {}\bigg(\,-\, j k_{0} \sqrt{\epsilon_{r}^{-1} {\upmu}_{r}} \tilde{H}_{zs}^{*} \,+\, {\partial A \over \partial {\nabla H_{zs}}}\cdot \mathbf{n} \,+\, {\partial B \over \partial H_{zs}}\bigg) \delta H_{zs} \,\mathrm{d}{\Gamma} \\ &&+\displaystyle{\int}_{{\Gamma}_{pd}\bigcup{\Gamma}_{ps}\bigcup{\Gamma}_{sm}} \left( {\partial A \over \partial {\nabla H_{zs}}}\cdot \mathbf{n} + {\partial B \over \partial H_{zs}}\right) \delta H_{zs} \,\mathrm{d}{\Gamma} = 0\\ && \Longleftrightarrow \\ &&{} {\int}_{\Omega} - \epsilon_{r}^{-1} \nabla \tilde{H}_{zs}^{*} \cdot \nabla \hat{\tilde{H}}_{zs} \\ &&+ \bigg({k_{0}^{2}} {\upmu}_{r} \tilde{H}_{zs}^{*} + {\partial A \over \partial H_{zs}} - \nabla \cdot {\partial A \over\partial \nabla H_{zs}}\bigg) \hat{\tilde{H}}_{zs} \,\mathrm{d}{\Omega} \\ && + \displaystyle{\int}_{{\Gamma}_{ab}} \bigg({}-{} j k_{0} \sqrt{\epsilon_{r}^{-1} {\upmu}_{r}} \tilde{H}_{zs}^{*} {}+{} {\partial A \over \partial {\nabla H_{zs}}}{}\cdot \mathbf{n} {}+{} {\partial B \over \partial H_{zs}}\bigg) \hat{\tilde{H}}_{zs} \,\mathrm{d}{\Gamma} \\ && + \displaystyle{\int}_{{\Gamma}_{pd}\bigcup{\Gamma}_{ps}\bigcup{\Gamma}_{sm}} \left( {\partial A \over \partial {\nabla H_{zs}}}\cdot \mathbf{n} + {\partial B \over \partial H_{zs}}\right) \hat{\tilde{H}}_{zs} \,\mathrm{d}{\Gamma} = 0,\\ && \text{for}~\forall \hat{\tilde{H}}_{zs} \in \mathcal{H}^{1}\left({\Omega}\right) \end{array} $$
(30)

and

$$\begin{array}{@{}rcl@{}} && {}{\int}_{\Omega} r^{2} \nabla \delta \rho_{f} \cdot \nabla \tilde{\rho}_{f}^{*} \\ &&{}+ \bigg[ \tilde{\rho}_{f}^{*} + {{\partial A}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} - {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \nabla \left(H_{zs}+H_{zi}\right) \cdot \nabla \tilde{H}_{zs}^{*} \bigg] \delta \rho_{f} \,\mathrm{d}{\Omega}\\ && {}+ {\int}_{{\Gamma}_{ab}} \left(- j k_{0} {{\partial \sqrt{\epsilon_{r}^{-1}}}\over{\partial \rho_{fp}}} \sqrt{{\upmu}_{r}} H_{zs} \,+\, {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} \nabla H_{zi} \cdot \mathbf{n} \right)\tilde{H}_{zs}^{*} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \delta \rho_{f} \,\mathrm{d}{\Gamma} \\ && {}+ {\int}_{{\Gamma}_{pd}\bigcup{\Gamma}_{ps}\bigcup{\Gamma}_{sm}} {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \nabla H_{zi} \cdot \mathbf{n} \tilde{H}_{zs}^{*} \delta \rho_{f} \,\mathrm{d}{\Gamma} = 0 \\ && \Longleftrightarrow \\ && {\int}_{\Omega} r^{2} \nabla \tilde{\rho}_{f}^{*} \cdot \nabla \hat{\tilde{\rho}}_{f} \\ &&{}+ \bigg[ \tilde{\rho}_{f}^{*} + {{\partial A}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} - {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \nabla \left(H_{zs}+H_{zi}\right) \cdot \nabla \tilde{H}_{zs}^{*} \bigg] \hat{\tilde{\rho}}_{f} \,\mathrm{d}{\Omega}\\ && {}+ {\int}_{{\Gamma}_{ab}} \left(- j k_{0} {{\partial \sqrt{\epsilon_{r}^{-1}}}\over{\partial \rho_{fp}}} \sqrt{{\upmu}_{r}} H_{zs} + {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} \nabla H_{zi} \cdot \mathbf{n} \right) \tilde{H}_{zs}^{*} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \hat{\tilde{\rho}}_{f} \,\mathrm{d}{\Gamma} \\ && {}+ {\int}_{{\Gamma}_{pd}\bigcup{\Gamma}_{ps}\bigcup{\Gamma}_{sm}} {{\partial \epsilon_{r}^{-1}}\over{\partial \rho_{fp}}} {{\partial \rho_{fp}}\over{\partial \rho_{f}}} \nabla H_{zi} \cdot \mathbf{n} \tilde{H}_{zs}^{*} \hat{\tilde{\rho}}_{f} \,\mathrm{d}{\Gamma} = 0,\\ && {}\text{for}~\forall \hat{\tilde{\rho}}_{f} \in \mathcal{H}^{1}\left({\Omega}\right) \end{array} $$
(31)

Based on the arbitrariness of \(\hat {\tilde {H}}_{zs}\) and \(\hat {\tilde {\rho }}_{f}\) and Gauss theory [52], the weak forms in Eqs. 30 and 31 can be transformed into the strong forms of the adjoint Eqs. 11 and 12. After the derivation of the adjoint equations, the adjoint derivative of the computational design problem can be further obtained as

$$ \begin{array}{lll} & \left<{{\delta\hat{J}}\over{\delta\rho}},\delta\rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}} \\ = & \left<J_{\rho},\delta \rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}} + \left<{\Psi}_{\rho},\delta \rho\right>_{\mathcal{L}^{2*},\mathcal{L}^{2}} \\ = & {\int}_{\Omega} \left({{\partial A}\over{\partial\rho}}- \tilde{\rho}_{f}^{*} \right) \delta\rho \,\mathrm{d}{\Omega} \end{array} $$
(32)

which can be transformed into the strong form

$$ \begin{array}{l} {{\delta\hat{J}}\over{\delta\rho}} = {{\partial A}\over{\partial\rho}}- \tilde{\rho}_{f}^{*},~\text{in}~{\Omega} \end{array} $$
(33)

In the adjoint derivative, only the real part is utilized because the design variable ρ is the distribution defined on real space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Liu, Z., Song, C. et al. Topology Optimization-Based Computational Design Methodology for Surface Plasmon Polaritons. Plasmonics 10, 569–583 (2015). https://doi.org/10.1007/s11468-014-9842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9842-9

Keywords

Navigation