Skip to main content

1-Minute Spacer Layer Engineering for Tunable Enhancements in Surface Plasmon-Coupled Emission

Abstract

In this work, we report green advancements in surface plasmon-coupled emission (SPCE) spacer layer engineering with the shortest preparation time to realize ≥35-fold enhancements in the fluorescence emission intensity. A simple linker free spin coat of polyvinyl alcohol (PVA) dispersed nanoparticles on a SPCE substrate was employed as a spacer layer to achieve tunable enhancements in plasmon-coupled fluorescence emission intensities. Based on the current findings, the enhancements achieved in the SPCE can be tuned simply by varying the nanomaterial and its size. In the technique developed by us, nanomaterials having any capping agent, shape, and origin can be used as a spacer material as the nanomaterials are coated on the silver thin film in the form of a PVA-embedded hybrid spacer without the use of any linker or bond forming chemicals. We also demonstrate the use of biogenic nanoparticles as SPCE spacer layers for enabling tuning of SPCE enhancements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

SPCE:

Surface plasmon-coupled emission

MEF:

Metal enhanced fluorescence

PVA:

Polyvinyl alcohol

RK:

Reverse Kretschmann

SPR:

Surface plasmon resonance

AgNP:

Silver nanoparticles

AuNP:

Gold nanoparticles

bAgNP:

Biogenic silver nanoparticles

bAuNP:

Biogenic gold nanoparticles

RhB:

Rhodamine B

APES:

3-Aminopropyl triethoxy silane

FS:

Free space

References

  1. Shimon W (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    Article  Google Scholar 

  2. Prestel H, Gahr A, Neissner R (2000) Detection of heavy metals in water by fluorescence spectroscopy: on the way to a suitable sensor system. Fresenius J Anal Chem 368:182–161

    CAS  Article  Google Scholar 

  3. Neupane LN, Park JY, Park JH, Lee KH (2013) Turn-on fluorescent chemosensor based on an amino acid for Pb(II) and Hg(II) ions in aqueous solutions and role of tryptophan for sensing. Org Lett 15:254–257

    CAS  Article  Google Scholar 

  4. Machara NP, Van Orden A, Goodwin PM, Keller RA (1998) Single-molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate. Anal Chem 70:1444–1451

    Article  Google Scholar 

  5. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–129

    Article  Google Scholar 

  6. Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169

    CAS  Article  Google Scholar 

  7. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324:170–182

    CAS  Article  Google Scholar 

  8. Hiep HM, Fujii M, Hayashi S (2007) Effects of molecular orientation on surface-plasmon coupled emission patterns. Appl Phys Lett 91:183110–183113

    Article  Google Scholar 

  9. Sai Sathish R, Kostov Y, Rao G (2009) High-resolution surface plasmon coupled resonant filter for monitoring of fluorescence emission from molecular multiplexes. Appl Phys Lett 94:223113–3

    Article  Google Scholar 

  10. Sai Sathish R, Kostov Y, Rao G (2009) Spectral resolution of molecular ensembles under ambient conditions using surface plasmon coupled fluorescence emission. Appl Opt 48(28):5348–5353

    Article  Google Scholar 

  11. Cao SH, Cai WP, Liu Q, Li YQ (2012) Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences. Annu Rev Anal Chem 5:317–336

    CAS  Article  Google Scholar 

  12. Calander N (2004) Theory and simulation of surface plasmon-coupled emission from fluorophores at planar structures. Anal Chem 76:2168–2173

    CAS  Article  Google Scholar 

  13. Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735

    CAS  Article  Google Scholar 

  14. Stefani FD, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film. Phys Rev Lett 94:023005–4

    CAS  Article  Google Scholar 

  15. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I (2005) Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem 344:161–167

    CAS  Article  Google Scholar 

  16. Aslan K, Zhang Y, Geddes CD (2009) Surface plasmon-coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays. Anal Chem 81:3801–3808

    CAS  Article  Google Scholar 

  17. Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I (2006) Application of surface plasmon coupled emission to study of muscle. Biophys J 91:2626–2635

    CAS  Article  Google Scholar 

  18. Smith DS, Kostov Y, Rao G (2007) SPCE-based sensors: ultrafast oxygen sensing using surface plasmon-coupled emission from ruthenium probes. Sensors Actuators B 127:432–440

    CAS  Article  Google Scholar 

  19. Smith D, Kostov Y, Rao G (2008) Signal enhancement of surface plasmon-coupled directional emission by a conical mirror. Appl Opt 47:5229–5234

    Article  Google Scholar 

  20. Pradyumna M, Podila R, Lingam K, Krishna VS, Sai Sathish R, Venkataramaniah K, Rao AM (2013) Amplification of surface plasmon coupled emission from graphene-Ag hybrid films. J Phys Chem C 117:17205–17210

    Article  Google Scholar 

  21. Chowdhury MH, Ray K, Geddes CD, Lakowicz JR (2008) Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chem Phys Lett 452:162–167

    CAS  Article  Google Scholar 

  22. Sai Sathish R, Kostov Y, Smith D, Rao G (2009) Solution-deposited thin silver films on plastic surfaces for low-cost applications in plasmon-coupled emission sensors. Plasmonics 4:127–133

    CAS  Article  Google Scholar 

  23. Sai Sathish R, Kostov Y, Rao G (2010) Studies of surface-adsorbed fluorescently labeled casein and concanavalin A using surface plasmon-coupled emission. Plasmonics 5:383–387

    CAS  Article  Google Scholar 

  24. Sai Sathish R, Venkatesh S, Kostov Y (2014) Solution-deposited plasmonic nanofilms and their applications. In: Aliofkhazraei M (ed) Handbook of functional nanomaterials, vol 1. Nova, New York, pp 333–348

    Google Scholar 

  25. Smith D, Sai Sathish R, Kostov Y, Smith D, Rao G (2010) Solution deposition of nanometer scale silver films as an alternative to vapor deposition for plasmonic excitation. Thin Solid Films 518:3772–3777

    CAS  Article  Google Scholar 

  26. Pylaev TE, Volkova EK, Kochubey VI, Bogatyrev A, Khlebtsov NG (2013) DNA detection assay based on fluorescence quenching of rhodamine B by gold nanoparticles: the optical mechanisms. J Quant Spectrosc Radiat Transf 131:34–42

    CAS  Article  Google Scholar 

  27. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittens DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 80:1–4

    Google Scholar 

  28. Zhang H, Wang L, Jiang W (2011) Label free DNA detection based on gold nanoparticles quenching fluorescence of Rhodamine B. Talanta 85:725–729

    Article  Google Scholar 

  29. Karthikeyan B (2010) Fluorescence quenching of rhodamine-6G in Au nanocomposite. J Appl Phys 108:1–5

    Article  Google Scholar 

  30. Liu S, He J, Xue J, Ding W (2009) Efficient fabrication of transparent antimicrobial poly (vinyl alcohol) thin films. J Nanoparticle Res 11:553–560

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Sri Sathya Sai Baba, founder-chancellor, Sri Sathya Sai Institute of Higher Learning for his constant guidance. RSS acknowledges the financial support from the Department of Bio-Technology, Govt. of India, under Ramalingaswamy fellowship (No.102/IFD/SAN/1115/2013-14), Department of Science and Technology, Govt. of India, under Fast Track scheme (No.SR/FT/CS-51/2010(G)), and SV acknowledges the UGC-BSR fellowship, Govt. of India.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Sathish Ramamurthy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, S., Ghajesh, S. & Ramamurthy, S.S. 1-Minute Spacer Layer Engineering for Tunable Enhancements in Surface Plasmon-Coupled Emission. Plasmonics 10, 489–494 (2015). https://doi.org/10.1007/s11468-014-9832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9832-y

Keywords

  • Surface plasmon-coupled emission
  • Nanoparticles
  • Biogenic
  • Spin coating
  • Enhancements