Skip to main content
Log in

Characteristics of New Hybrid Plasmonic Bragg Reflectors Based on Sinusoidal and Triangular Gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, new structures for hybrid plasmonic Bragg reflectors (HPBRs), based on sinusoidal and triangular gratings, are proposed. The proposed structures exhibit better characteristics compared to previously studied rectangular HPBRs. Among these two structures, the triangular HPBR exhibits a better performance in terms of passband ripples and bandwidth than that of the sinusoidal one. Therefore, the structure of a microcavity as a defect in the proposed triangular HPBR is studied and its Q factor is compared with other types of plasmonic microcavities. It is also demonstrated that an apodization technique can reduce the size of the triangular HPBR-based microcavity and improve its Q factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Avrutsky I, Soref R, Buchwald W (2010) Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Opt Express 18(1):348–363. doi:10.1364/OE.18.000348

    Article  CAS  Google Scholar 

  3. Flammer PD, Banks JM, Furtak TE, Durfee CG, Hollingsworth RE, Collins RT (2010) Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements. Opt Express 18(20):21013–21023

    Article  CAS  Google Scholar 

  4. Oulton RF, Sorger VJ, Genov D, Pile D, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  5. Alam M, Caspers JN, Aitchison J, Mojahedi M (2013) Compact low loss and broadband hybrid plasmonic directional coupler. Opt Express 21(13):16029–16034

    Article  CAS  Google Scholar 

  6. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    Article  CAS  Google Scholar 

  7. Sun X, Zhou L, Li X, Hong Z, Chen J (2011) Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Appl Opt 50(20):3428–3434

    Article  CAS  Google Scholar 

  8. Zhao H, Guang XG, Huang J (2008) Novel optical directional coupler based on surface plasmon polaritons. Phys E Low Dimens Syst Nanostruct 40(10):3025–3029

    Article  Google Scholar 

  9. Rattier M, Benisty H, Stanley RP, Carlin J-F, Houdre R, Oesterle U, Smith CJ, Weisbuch C, Krauss TF (2002) Toward ultrahigh-efficiency aluminum oxide microcavity light-emitting diodes: guided mode extraction by photonic crystals. IEEE J Sel Top Quantum Electron 8(2):238–247

    Article  CAS  Google Scholar 

  10. Wierer J, Kellogg D, Holonyak N (1999) Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes. Appl Phys Lett 74(7):926–928

    Article  CAS  Google Scholar 

  11. Hosseini A, Massoud Y (2007) Subwavelength plasmonic Bragg reflector structures for on-chip optoelectronic applications. In: Circuits and systems, 2007. ISCAS 2007. IEEE International Symposium on, IEEE, pp 2283–2286

  12. Mu J-W, Huang W-P (2009) A low-loss surface plasmonic Bragg grating. J Lightwave Technol 27(4):436–439

    Article  Google Scholar 

  13. Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16(1):413–425

    Article  Google Scholar 

  14. Xu P, Huang Q, Shi Y (2013) Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Opt Commun 289:81–84

    Article  CAS  Google Scholar 

  15. Xu C, Ting H, Chen R, Ping Y, Yang J, Jiang X (2013) Transmission characteristics of a plasmonic Bragg reflector based on a metal-embedded slot structure. J Opt 15(10):105005

    Article  Google Scholar 

  16. Liu Y, Liu Y, Kim J (2010) Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles. Opt Express 18(11):11589–11598

    Article  CAS  Google Scholar 

  17. Sharma AK, Gupta BD (2006) Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Appl Opt 45(1):151–161

    Article  Google Scholar 

  18. Palik ED (1998) Handbook of optical constants of solids: index, vol 3. Access Online via Elsevier

  19. Gedney SD (1996) An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans Antennas Propag 44(12):1630–1639

    Article  Google Scholar 

  20. Neutens P, Lagae L, Borghs G, Van Dorpe P (2012) Plasmon filters and resonators in metal-insulator-metal waveguides. Opt Express 20(4):3408–3423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Alighanbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmandi, O., Alighanbari, A. & Gharavi, A. Characteristics of New Hybrid Plasmonic Bragg Reflectors Based on Sinusoidal and Triangular Gratings. Plasmonics 10, 233–239 (2015). https://doi.org/10.1007/s11468-014-9800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9800-6

Keywords

Navigation