Abstract
The influence of a reflecting surface on the optical bistability in a nanoantenna array is investigated theoretically. The optical response of the array is modeled using a surface integral equation method developed for periodic structures, and the description of the Kerr effect is based on an analytical model. Different behaviors are observed when the distance between the nanoantenna array and the silver layer is changed. Indeed, a modification of the nanoantennas radiative properties permit to control important parameters of the nonlinear response such as the intensity threshold and the area of the hysteresis cycle. The results presented in this article demonstrate that a reflecting surface is a convenient and flexible tool for controlling the operating of nonlinear optical systems based on the Kerr effect.
This is a preview of subscription content, access via your institution.





References
Maier SA (2007) Plasmonics: fundamentals and applications. Springer
Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663
Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422
Halas NJ, Lal S, Chanq WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961
Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1608
Novotny L, van Hulst NF (2011) Antennas for light. Nat Photonics 5:83–90
Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402
Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16:9144–9154
Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95:017402
Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930–933
Taminiau TH, Stefani FD, van Hulst NF (2011) Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett 11:1020–1024
Ward DR, Grady NK, Levin CS, Halas NJ, Wu Y, Nordlander P, Natelson D (2007) Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett 7:1396–1400
Zhang W, Fischer H, Schmid T, Zenobi R, Martin OJF (2009) Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C 113:14672–14675
Huang L, Maerkl SF, Martin OJF (2009) Integration of plasmonic trapping in a microfluidic environment. Opt Express 17:6018–6024
Zhang W, Huang L, Santschi C, Martin OJF (2010) Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett 10:1006–1011
Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356
Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981
Seok TJ, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck PJ, Cabrini S, Schwartzberg AM, Bokor J, Yablonovitch E, Wu MC (2011) Radiation engineering of optical antennas for maximum field enhancement. Nano Lett 11:2606–2610
Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R (2011) Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Opt Express 19:1648–1655
Fernandez-Garcia R, Rahmani M, Hong M, Maier SA, Sonnefraud Y (2012) Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. Opt Express 21:12552–12561
Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748
Biagioni P, Brida D, Huang JS, Kern J, Duo L, Hecht B, Finazzi M, Cerullo G (2012) Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett 12:2941–2947
Berthelot J, Bachelier G, Song M, Rai P, Francs G, Dereux A, Bouhelier A (2012) Silencing and enhancement of second harmonic generation in optical gap antennas. Opt Express 20:10498–10508
Slablab A, Le Xuan L, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch JF (2012) Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres. Opt Express 20:220–227
Butet J, Thyagarajan K, Martin OJF (2013) Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. Nano Lett 13:1787–1792
Thyagarajan K, Butet J, Martin OJF (2013) Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett 13:1847–1851
Metzger B, Hentschel M, Lippitz M, Giessen H (2013) Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt Lett 37:4741–4743
Navarro-Cia M, Maier SA (2012) Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 6:3537–3544
Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98:026104
Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402
Shen Y, Wang GP (2008) Optical bistability in metal gap waveguide nanocavities. Opt Express 16:8421–8426
Chen PY, Alù A (2010) Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 82:235405
Zhou F, Liu Y, Li ZY, Xia Y (2010) Analytical model for optical bistability in nonlinear metal-antennae involving Kerr materials. Opt Express 18:13337–13344
Chen PY, Argyropoulos C, Alù A (2012) Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics 1:221–233
Argyropoulos C, Ciracì C, Smith DR (2014) Enhanced optical bistability with film-coupled plasmonic nanocubes. App Phys Lett 104:063108
Noskov RE, Krasnok AE, Kivshar YS (2012) Nonlinear metal-dielectric nanoantennas for light switching and routing. New J Phys 14:093005
Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alù A (2012) Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 108:263905
Gallinet B, Kern AM, Martin OJF (2010) Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J Opt Soc Am A 27:2261–2271
Gallinet B, Martin OJF (2010) Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation. Photonics Nanostruct Fund App 8:278–284
Kern AM, Martin OJF (2009) Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures. J Opt Soc Am A 26:732–740
Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379
Ameling R, Giessen H (2013) Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Phot Rev 7:141–169
Boyd RW (1992) Nonlinear optics. Academic Press, New York
Liu Y, Qin F, Zhou F, Li ZY (2009) Ultrafast and low-power photonic crystal all-optical switching with resonant cavities. J App Phys 106:083102
Li ZY, Xia YN (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243–249
Khurgin JB, Sun G (2012) Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Appl Phys Lett 100:011105
Khurgin JB, Sun G (2013) Plasmonic enhancement of the third order nonlinear optical phenomena: figures of merit. Opt Express 21:27460–27480
Acknowledgments
This work was supported by the Swiss National Science Foundation (grants 200020_153662 and 406440_131280).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Butet, J., Martin, O.J.F. Manipulating the Optical Bistability in a Nonlinear Plasmonic Nanoantenna Array with a Reflecting Surface. Plasmonics 10, 203–209 (2015). https://doi.org/10.1007/s11468-014-9794-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11468-014-9794-0
Keywords
- Optical bistability
- Nanoantenna
- Kerr effect
- Nonlinear plasmonics
- Surface integral equation method