Skip to main content

Manipulating the Optical Bistability in a Nonlinear Plasmonic Nanoantenna Array with a Reflecting Surface

Abstract

The influence of a reflecting surface on the optical bistability in a nanoantenna array is investigated theoretically. The optical response of the array is modeled using a surface integral equation method developed for periodic structures, and the description of the Kerr effect is based on an analytical model. Different behaviors are observed when the distance between the nanoantenna array and the silver layer is changed. Indeed, a modification of the nanoantennas radiative properties permit to control important parameters of the nonlinear response such as the intensity threshold and the area of the hysteresis cycle. The results presented in this article demonstrate that a reflecting surface is a convenient and flexible tool for controlling the operating of nonlinear optical systems based on the Kerr effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  2. Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663

    CAS  Article  Google Scholar 

  3. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    CAS  Article  Google Scholar 

  4. Halas NJ, Lal S, Chanq WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    CAS  Article  Google Scholar 

  5. Mühlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1608

    Article  Google Scholar 

  6. Novotny L, van Hulst NF (2011) Antennas for light. Nat Photonics 5:83–90

    CAS  Article  Google Scholar 

  7. Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402

    Article  Google Scholar 

  8. Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16:9144–9154

    Article  Google Scholar 

  9. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95:017402

    CAS  Article  Google Scholar 

  10. Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930–933

    CAS  Article  Google Scholar 

  11. Taminiau TH, Stefani FD, van Hulst NF (2011) Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett 11:1020–1024

    CAS  Article  Google Scholar 

  12. Ward DR, Grady NK, Levin CS, Halas NJ, Wu Y, Nordlander P, Natelson D (2007) Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett 7:1396–1400

    CAS  Article  Google Scholar 

  13. Zhang W, Fischer H, Schmid T, Zenobi R, Martin OJF (2009) Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C 113:14672–14675

    CAS  Article  Google Scholar 

  14. Huang L, Maerkl SF, Martin OJF (2009) Integration of plasmonic trapping in a microfluidic environment. Opt Express 17:6018–6024

    CAS  Article  Google Scholar 

  15. Zhang W, Huang L, Santschi C, Martin OJF (2010) Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett 10:1006–1011

    Article  Google Scholar 

  16. Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356

    CAS  Article  Google Scholar 

  17. Lévêque G, Martin OJF (2006) Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express 14:9971–9981

    Article  Google Scholar 

  18. Seok TJ, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck PJ, Cabrini S, Schwartzberg AM, Bokor J, Yablonovitch E, Wu MC (2011) Radiation engineering of optical antennas for maximum field enhancement. Nano Lett 11:2606–2610

    CAS  Article  Google Scholar 

  19. Min Q, Pang Y, Collins DJ, Kuklev NA, Gottselig K, Steuerman DW, Gordon R (2011) Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles. Opt Express 19:1648–1655

    CAS  Article  Google Scholar 

  20. Fernandez-Garcia R, Rahmani M, Hong M, Maier SA, Sonnefraud Y (2012) Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. Opt Express 21:12552–12561

    Article  Google Scholar 

  21. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    CAS  Article  Google Scholar 

  22. Biagioni P, Brida D, Huang JS, Kern J, Duo L, Hecht B, Finazzi M, Cerullo G (2012) Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett 12:2941–2947

    CAS  Article  Google Scholar 

  23. Berthelot J, Bachelier G, Song M, Rai P, Francs G, Dereux A, Bouhelier A (2012) Silencing and enhancement of second harmonic generation in optical gap antennas. Opt Express 20:10498–10508

    Article  Google Scholar 

  24. Slablab A, Le Xuan L, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch JF (2012) Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres. Opt Express 20:220–227

    CAS  Article  Google Scholar 

  25. Butet J, Thyagarajan K, Martin OJF (2013) Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation. Nano Lett 13:1787–1792

    CAS  Article  Google Scholar 

  26. Thyagarajan K, Butet J, Martin OJF (2013) Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett 13:1847–1851

    CAS  Google Scholar 

  27. Metzger B, Hentschel M, Lippitz M, Giessen H (2013) Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt Lett 37:4741–4743

    Article  Google Scholar 

  28. Navarro-Cia M, Maier SA (2012) Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. ACS Nano 6:3537–3544

    CAS  Article  Google Scholar 

  29. Danckwerts M, Novotny L (2007) Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98:026104

    Article  Google Scholar 

  30. Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402

    CAS  Article  Google Scholar 

  31. Shen Y, Wang GP (2008) Optical bistability in metal gap waveguide nanocavities. Opt Express 16:8421–8426

    Article  Google Scholar 

  32. Chen PY, Alù A (2010) Optical nanoantenna arrays loaded with nonlinear materials. Phys Rev B 82:235405

    Article  Google Scholar 

  33. Zhou F, Liu Y, Li ZY, Xia Y (2010) Analytical model for optical bistability in nonlinear metal-antennae involving Kerr materials. Opt Express 18:13337–13344

    CAS  Article  Google Scholar 

  34. Chen PY, Argyropoulos C, Alù A (2012) Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics 1:221–233

    Article  Google Scholar 

  35. Argyropoulos C, Ciracì C, Smith DR (2014) Enhanced optical bistability with film-coupled plasmonic nanocubes. App Phys Lett 104:063108

    Article  Google Scholar 

  36. Noskov RE, Krasnok AE, Kivshar YS (2012) Nonlinear metal-dielectric nanoantennas for light switching and routing. New J Phys 14:093005

    Article  Google Scholar 

  37. Argyropoulos C, Chen PY, Monticone F, D’Aguanno G, Alù A (2012) Nonlinear plasmonic cloaks to realize giant all-optical scattering switching. Phys Rev Lett 108:263905

    Article  Google Scholar 

  38. Gallinet B, Kern AM, Martin OJF (2010) Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J Opt Soc Am A 27:2261–2271

    CAS  Article  Google Scholar 

  39. Gallinet B, Martin OJF (2010) Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation. Photonics Nanostruct Fund App 8:278–284

    Article  Google Scholar 

  40. Kern AM, Martin OJF (2009) Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures. J Opt Soc Am A 26:732–740

    Article  Google Scholar 

  41. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    CAS  Article  Google Scholar 

  42. Ameling R, Giessen H (2013) Microcavity plasmonics: strong coupling of photonic cavities and plasmons. Laser Phot Rev 7:141–169

    CAS  Article  Google Scholar 

  43. Boyd RW (1992) Nonlinear optics. Academic Press, New York

    Google Scholar 

  44. Liu Y, Qin F, Zhou F, Li ZY (2009) Ultrafast and low-power photonic crystal all-optical switching with resonant cavities. J App Phys 106:083102

    Article  Google Scholar 

  45. Li ZY, Xia YN (2010) Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett 10:243–249

    Article  Google Scholar 

  46. Khurgin JB, Sun G (2012) Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium. Appl Phys Lett 100:011105

    Article  Google Scholar 

  47. Khurgin JB, Sun G (2013) Plasmonic enhancement of the third order nonlinear optical phenomena: figures of merit. Opt Express 21:27460–27480

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (grants 200020_153662 and 406440_131280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Butet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butet, J., Martin, O.J.F. Manipulating the Optical Bistability in a Nonlinear Plasmonic Nanoantenna Array with a Reflecting Surface. Plasmonics 10, 203–209 (2015). https://doi.org/10.1007/s11468-014-9794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9794-0

Keywords

  • Optical bistability
  • Nanoantenna
  • Kerr effect
  • Nonlinear plasmonics
  • Surface integral equation method