Skip to main content
Log in

Localized Surface Plasmon Absorption and Photoluminescence of In Situ-Generated Nano Silver in a Novel Chloroborosilicate Glass and Glass Ceramics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver (Ag) nanoparticles (NPs) have been generated in situ in a novel chloroborosilicate glass system SiO2–B2O3–BaO–K2O–Al2O3–BaCl2 in the presence of a small amount of SnO as a reducing agent. The glass–metal nanocomposite has been synthesized by a single-step melt-quenching technique followed by a carefully designed heat treatment schedule. Absorption and photoluminescence properties have been studied before and after matrix crystallization along with the progress of heat treatment. The x-ray diffraction and transmission electron microscopy confirms the crystallization of the glass matrix at higher temperature. Both UV–Vis absorption and photoluminescence (PL) spectra of the samples reveal the formation of Ag NPs. Multiple peaks in the UV–Vis absorption spectra of Ag-doped samples have been explained by combined surface plasmon resonance and highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) of inter (dsp) and intra (spsp) band transitions. The observed PL bands have been considered to be originated from the radiative decay of the surface plasmon resonance and inter-band (spd) LUMO-HOMO transitions. The PL intensity is found to increase with heat treatment up to 40 min, and then, decreases. This indicates that when larger than a certain size limit of nano silver (∼6.5 nm), they are not photoluminescent. Crystallization of glass matrix has also a significant effect on the PL intensity and intensity distribution of different emission bands along with band shapes. These nanocomposites are promising materials for various nanophotonic applications as revealed in their different properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189

    Article  CAS  Google Scholar 

  2. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Ann Rev Phys Chem 60:167–192

    Article  CAS  Google Scholar 

  3. Bäumer M, Freund HJ (1999) Metal deposits on well –ordered oxide films. Prog Surf Sci 61:127

    Article  Google Scholar 

  4. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323

    Article  CAS  Google Scholar 

  5. Prasad P N (2004) Nanophotonics 129

  6. Kelly KL, Coronado E, Zhao LL, Schaltz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  7. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  8. Schiffrin DJ (2004) Faraday discussions: nanoparticle assemblies, vol 125. RSC, Cambridge

  9. Rao CNR, Műller A, Cheetham AK (2004) The chemistry of nanometals: synthesis, properties and applications, vol 2. Wiley, Weinheim

    Book  Google Scholar 

  10. Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  11. Houk RJT, Jacobs BW, Gabaly FEI, Chang NN, Talin AA, Graham DD, House SD, Robertson IM, Allendort MD (2009) Silver cluster formation, dynamics, and chemistry in metal–organic frameworks. Nano Lett 9:3413–3418

    Article  CAS  Google Scholar 

  12. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Duyne RPV (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  13. Choi B-h, Lee H-H, Jin S, Chun S, Kim S-H (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnology 18:075706-1-5

  14. Konta R, Kato H, Kobayashi H, Kudo A (2003) Photophysical properties and photocatalytic under visible light irradiation of silver vanadates. Phys Chem Chem Phys 5:3061–3065. doi:10.1039/B300179B

    Article  CAS  Google Scholar 

  15. Huxter VM, Scholes GD (2009) Photophysics of colloidal semiconductor nanocrystals. J Nanophotonics 3:032504-1-15

  16. Magruder RH III, Robinson SJ, Smith C, Meldrum A, Halabica A, Haglund RF Jr (2009) Dichroism in Ag nanoparticle composites with bimodal size distribution. J Appl Phys 105:024303-1-5

  17. Bhattacharyya S, Bocker C, Heil T, Jinschek JR, Höche T, Rüssel C, Kohl H (2009) Experimental evidence of self-limited growth of nanocrystals in glass. Nano Lett 9:2493–2496

    Article  CAS  Google Scholar 

  18. Benahmed AJ, Ho C-M (2007) Band gap-assisted surface-plasmon sensing. Appl Opt 46:3369–3375

    Article  Google Scholar 

  19. Okamoto T, H’Dhili F, Kawata S (2004) Towards plasmonic band gap laser. Appl Phys Lett 85:3968–3970

    Article  CAS  Google Scholar 

  20. Scalora M, Bloemer MJ, Pethel AS, Dowling JP, Bowden CM, Manka AS (1998) Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures. J Appl Phys 83:2377–2383

    Article  CAS  Google Scholar 

  21. Kumar A, Srivastava R, Tyagi P, Mehta DS, Kamalasanan MN (2012) Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon. Org Electron 13:159–165

    Article  CAS  Google Scholar 

  22. Kumar A, Srivastava R, Mehta DS, Kamalasanan MN (2012) Surface plasmon enhanced blue organic light emitting diode with nearly 100% fluorescence efficiency. Org Electron 13:1750–1755

    Article  CAS  Google Scholar 

  23. Kumar A, Tyagi P, Srivastava R, Mehta DS, Kamalasanan MN (2013) Energy transfer process between exciton and surface plasmon: complete transition from Forster to surface energy transfer. Appl Phys Lett 20:203304

    Article  Google Scholar 

  24. Singh SP, Karmakar B (2011) Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag: bismuth glass nanocomposites. Plasmonics 6:457–467

    Article  CAS  Google Scholar 

  25. Vogel H (1992) Glaschemie. Springer, Berlin

    Book  Google Scholar 

  26. Seward TP III (1980) Coloration and optical anisotropy in silver-containing glasses. J Non-Cryst Solids 40:499

    Article  CAS  Google Scholar 

  27. Akai T (1993) Preparation of copper-ruby glasses by sputtering and their optical properties. J Ceram Soc of Jpn 101:105

    Article  CAS  Google Scholar 

  28. Taked S, Yamamoto K, Matsumoto K (2000) Coloration due to colloidal Ag particles formed in float glass. J Non-Cryst Solids 265:133–142

    Article  Google Scholar 

  29. Ricard D, Roussignol P, Flytzanis C (1985) Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt Lett 10:511

    Article  CAS  Google Scholar 

  30. Heolweil EJ, Hochestrasser RM (1985) Non linear spectroscopy and picoseconds transient grating study of colloidal gold. J Chem Phys 83:4762

    Article  Google Scholar 

  31. Borrelli NF, Hall DW, Uhlmann DR, Kreidl NJ (1991) Optical properties of glass. American Ceramic Society Westerville, OH, p 87

    Google Scholar 

  32. Bazán JC, Sola M, Janyistabro C, Hofmeister H, Dubiel M (2011) Preparation of silver nanoparticles in soda-lime silica glass by an electrochemical procedure. J Non-Cryst Solids 357:1527–1530

    Article  Google Scholar 

  33. Catana F, De Sousa Menesesb D, Blondeaua JP, Allama L (2008) Structural changes of Ag+–Na+ ion exchanged soda-lime glasses investigated by scanning electron microscopy and infrared reflectivity. J Non-Cryst Solids 354:1026–1031

    Article  Google Scholar 

  34. Svecova B, Nekvindova P, Mackova A, Malinsky P, Kolitsch A, Machovic V, Stara S, Mika M, Spirkova J (2010) Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses. J Non-Cryst Solids 356:2468–2472

    Article  CAS  Google Scholar 

  35. Simo A, Polte J, Pfänder N, Vainio U, Emmerling F, Rademann K (2012) Formation mechanism of silver nanoparticles stabilized in glassy matrices. J Am Chem Soc 134:18824–18833

    Article  CAS  Google Scholar 

  36. Liu Q, He X, Zhou X, Ren F, Xiao X, Jiang C, Zhou H, Zhao X, Lu L, Qian S (2011) Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2–24Ga2S3–20KBr chalcohalide glasses. J Non-Cryst Solids 357:2320–2323

    Article  CAS  Google Scholar 

  37. Rivera VAG, Ledemi Y, Osorio SPA, Manzani D, Ferri FA, Sidney J, Ribeiro L, Nunes LAO, Marega E Jr (2013) Tunable plasmon resonance modes on gold nanoparticles in Er3 +-doped germanium–tellurite glass. J Non-Cryst Solids 378:126–134

    Article  CAS  Google Scholar 

  38. Dousti MR, Sahar MR, Ghoshal SK, Amjad RJ, Arifin R (2012) Up-conversion enhancement in Er3 +-Ag co-doped zinc tellurite glass: effect of heat treatment. J Non-Cryst Solids 358:2939–2942

    Article  CAS  Google Scholar 

  39. Sun H, Yu C, Duan Z, Zhou G, Zhang J, Hu L, Jiang Z (2005) Intense frequency upconversion luminescence in Yb3+/Tm3+-codoped oxychloride germanate glasses. J Mater Science 40:5675–5678

    Article  CAS  Google Scholar 

  40. Clarkson JP, Winans J, Fauchet PM (2011) On the scaling behavior of dipole and quadrupole modes in coupled plasmonic nanoparticle pairs. Opt Mater Express 1:970–979

    Article  CAS  Google Scholar 

  41. Young AT (1982) Rayleigh scattering. Phys Today 35:42

    Article  CAS  Google Scholar 

  42. Mie G (1908) Contributions to the optics of the turbid media particularly of the colliodal metal solutions. Ann Phys 330:377–445

    Article  Google Scholar 

  43. Lin CAJ, Lee CH, Hsieh JT, Wang HH, Li JK, Shen JL, Chan WH, Yeh HI, Chang WH (2009) Review: synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 29:276–283

    CAS  Google Scholar 

  44. Bakr OM, Amendola V, Aikens CM, Wenseleers W, Li R, Negro LD, Schatz GC, Stellacci F (2009) Silver nanoparticles with broad multiband linear optical absorption. Angew Chem Int Ed 48:5921

    Article  CAS  Google Scholar 

  45. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc Communications 130:5883–5885

    Article  CAS  Google Scholar 

  46. Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff T, Whetten RL (2002) Visible to infrared luminescence from a 25-atom gold cluster. J Phys Chem B 106:3410–3415

    Article  CAS  Google Scholar 

  47. Akimov V, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature London 450:402

    Article  CAS  Google Scholar 

  48. Qiu J, Shirai M, Nakaya T, Si J, Jiang X, Zhu C, Hirao K (2002) Space-selective precipitation of silver nanoparticles inside glasses. Appl Phys Lett 81:3040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Kamal Dasgupta, Acting Director of the institute and Dr. Ranjan Sen, Head, Glass Division for their encouragement and support. The authors acknowledge the technical supports provided by the x-ray and electron microscopy section of the institute. NS would like to express her sincere gratitude for the financial support of the Academy of Scientific and Innovative Research (AcSIR) and Council of Scientific and Industrial Research (CSIR). Partial financial support under CSIR-TAPSUN Project NWP0055 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shasmal, N., Karmakar, B. Localized Surface Plasmon Absorption and Photoluminescence of In Situ-Generated Nano Silver in a Novel Chloroborosilicate Glass and Glass Ceramics. Plasmonics 10, 191–202 (2015). https://doi.org/10.1007/s11468-014-9793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9793-1

Keywords

Navigation