Skip to main content
Log in

Plasmonic Absorption Enhancement in a Dye-Sensitized Solar Cell Using a Fourier Harmonics Grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A solid-state dye-sensitized solar cell with back-contact Fourier harmonics (FH) grating was studied theoretically, using the rigorous coupled-wave analysis. The FH grating was found to provide enhanced absorptance and enable efficient multiple surface–plasmon–polariton (SPP) wave excitations. The incident plane wave was considered to be TM-polarized with oblique incidence. The FH gratings were designed to excite multiple SPP waves at desirable wavelengths by solving a canonical boundary value problem. The excitation of SPP waves is indicated by the presence of peaks in the absorptance plots. The FH grating enables light trapping corresponding to the wave vectors of the constituting simple gratings, which may be useful for chemical sensing and communication applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature (London) 395(6702):583–585. http://www.nature.com/nature/journal/v395/n6702/abs/395583a0.html

    Article  CAS  Google Scholar 

  2. Grätzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34(1):8–13. doi:10.1246/cl.2005.8

    Article  Google Scholar 

  3. Cai N, Moon S-J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2011) An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett 11(4):1452–1456. doi:10.1021/nl104034e

    Article  CAS  Google Scholar 

  4. Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399):486–489. doi:10.1038/nature11067

    Article  CAS  Google Scholar 

  5. Moulé AJ, Snaith HJ, Kaiser M, Klesper H, Huang DM, Grätzel M, Meerholz K (2009) Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties. J Appl Phys 106(7):073111. doi:10.1063/1.3204982

    Article  Google Scholar 

  6. Fonash SJ (2010) Solar cell device physics

  7. Atalla MRM, Faryad M, Lakhtakia A (2012) On surface-plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile. Part II: high-phase-speed solutions. J Opt Soc Am B 29(11):3078–3086. doi:10.1364/josab.29.003078

    Article  CAS  Google Scholar 

  8. Watts RA, Hibbins AP, Sambles JR (1999) The influence of grating profile on surface plasmon polariton resonances recorded in different diffracted orders. J Mod Opt 46(15):2157–2186. doi:10.1080/095003499148567

    Article  Google Scholar 

  9. Adam P, Dostálek J, Homola J (2006) Multiple surface plasmon spectroscopy for study of biomolecular systems. Sens Actuat B Chem 113(2):774–781. doi:10.1016/j.snb.2005.07.029

    Article  CAS  Google Scholar 

  10. Atalla MRM (2014) Multiple excitations of surface-plasmon-polariton waves in an amorphous silicon p-i-n solar cell using Fourier harmonics and compound gratings. J Opt Soc Am.B 31(8):1906–1914. doi:10.1364/JOSAB.31.001906

    Article  CAS  Google Scholar 

  11. Huang DM, Snaith HJ, Grätzel M, Meerholz K, Moulé AJ (2009) Optical description of solid-state dye-sensitized solar cells. II. Device optical modeling with implications for improving efficiency. J Appl Phys 106(7):073112. doi:10.1063/1.3204985

    Article  Google Scholar 

  12. Haug F-J, Söderström T, Cubero O, Terrazzoni-Daudrix V, Ballif C (2008) Plasmonic absorption in textured silver back reflectors of thin film solar cells. J Appl Phys 104(6):064509. doi:10.1063/1.2981194

    Article  Google Scholar 

  13. Atalla MRM (2013) Effect of nonhomogeneous intrinsic layer in a thin-film amorphous-silicon solar cell.Proc. SPIE 8620:86201A 10.1117/12.2005806

  14. Faryad M, Lakhtakia A (2010) On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile. J Opt Soc Am B 27(11):2218–2223. doi:10.1364/josab.27.002218

    Article  CAS  Google Scholar 

  15. Moharam MG, Pommet DA, Grann EB, Gaylord TK (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12(5):1077–1086. doi:10.1016/j.snb.2005.07.029

    Article  Google Scholar 

  16. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  17. (2006). In: Homola J (ed) Surface Plasmon Resonance Based Sensors. Springer, Heidelberg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud R. M. Atalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atalla, M.R.M. Plasmonic Absorption Enhancement in a Dye-Sensitized Solar Cell Using a Fourier Harmonics Grating. Plasmonics 10, 151–156 (2015). https://doi.org/10.1007/s11468-014-9789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9789-x

Keywords

Navigation