Skip to main content
Log in

Basic Sets for Plasmonic Diagnostics in Aggregates of Capped and Uncapped Gold Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Gold nanorods (GNRs) have recently been developed for medical applications, and their silanization has been proposed for improving their photostability. In this paper, we show that self-assembled polyethylene glycol (PEG)ylated and silanized GNRs enjoy another benefit of silanization, i.e. its success in reshaping the plasmonic couplings typical of particle aggregation, for increasing shell widths. We investigated clusters of silanized gold nanorods that were capped with silica shells of different thickness. For a shell width of 12 nm, we obtained an optical extinction peak in the near infrared about two times greater than that in the green. In order to discuss the main features of the experimental spectra, we found it useful to model the aggregates with elementary clusters containing a small number of coupled GNRs. We availed of the discrete dipole approximation (DDA) for simulating the extinction coefficients of different basis sets. We reproduced the experimental spectrum for a shell width of 12 nm by modelling its reshaping with pairs of coupled particles in an end-to-end or side-by-side configuration and different aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 48:4880–4910

    Article  Google Scholar 

  2. Cobley CM, Chen JY, Cho EC, Wang LV, Xia YN (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56

    Article  CAS  Google Scholar 

  3. Ratto F, Matteini P, Centi S, Rossi F, Pini R (2011) Gold nanorods as new nanochromophores for photothermal therapies. J Biophotonics 4:64–73

    Article  CAS  Google Scholar 

  4. Dreaden EC, Alkilany AM, Huang XH, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  Google Scholar 

  5. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831

    Article  CAS  Google Scholar 

  6. Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L, Brennan MF, Allen PJ, Mason MD (2008) PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2:2263–2272

    Article  CAS  Google Scholar 

  7. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708

    Article  CAS  Google Scholar 

  8. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  CAS  Google Scholar 

  9. Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930

    Article  CAS  Google Scholar 

  10. Matteini P, Ratto F, Rossi F, Centi S, Dei L, Pini R (2010) Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives. Adv Mater 22:4313–4316

    Article  CAS  Google Scholar 

  11. Fernandez-Lopez C, Mateo-Mateo C, Alvarez-Puebla RA, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM (2009) Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. Langmuir 25:13894–13899

    Article  CAS  Google Scholar 

  12. Joshi PP, Yoon SJ, Chen YS, Emelianov S, Sokolov KV (2013) Development and optimization of near-IR contrast agents for immune cell tracking. Biomed Opt Express 4:2609–2618

    Article  Google Scholar 

  13. Akiyama Y, Niidome Y, Mori T, Katayama Y, Niidome TJ, Biomater (2013) PEG-silica-modified gold nanorods that retain their optical properties in tumor tissues. Sci Polym Educ 24:2071–2080

    CAS  Google Scholar 

  14. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  15. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658

    Article  CAS  Google Scholar 

  16. Barrow SJ, Wei X, Baldauf JS, Funston AM, Mulvaney P (2012) The surface plasmon modes of self-assembled gold nanocrystals. Nat Commun 3(1275):1–9

    Article  Google Scholar 

  17. Grzelczak M, Mezzasalma SA, Herasimenka Y, Feruglio L, Montini T, Perez-Juste J, Fornasiero P, Prato M, Liz-Marzan LM (2012) Antibonding plasmon modes in colloidal gold nanorod clusters. Langmuir 28:8826–8833

    Article  CAS  Google Scholar 

  18. Kumar J, Wei X, Barrow S, Funston AM, Thomas KG, Mulvaney P (2013) Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys Chem Chem Pys 15:4258–4264

    Article  CAS  Google Scholar 

  19. Draine BT, Flatau PJ (2010) User guide for the discreet dipole approximation code DDSCAT 7.1. http://arxiv.org/abs/1002.1505

  20. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  21. Stokes NL, Edgar JA, McDonagh AM, Cortie MB (2010) Spectrally selective coatings of gold nanorods on architectural glass. J Nanoparticle Res 12:2821–2830

    Article  CAS  Google Scholar 

  22. Cristea D, Obreja P, Kusko M, Manea E, Rebigan R (2006) Polymer micromachining for micro- and nanophotonics. Mater Sci Eng C Mater Biol Appl 26:1049–1055

    Article  CAS  Google Scholar 

  23. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  24. Aizpurua J, Bryant GW, Richter LJ, Garcia de Abajo FJ, Kelley BK, Mallouk T (2005) Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys Rev B 71(235420):1–13

    Google Scholar 

  25. Jain PK, Eustis S, El-Sayed MJ (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253

    Article  CAS  Google Scholar 

  26. Sharma V, Park K, Srinivasarao M (2009) Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Eng R Rep 65:1–38

    Article  Google Scholar 

  27. Weitz DA, Oliveria M (1984) Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys Rev Lett 52:1433–1436

    Article  CAS  Google Scholar 

  28. Ratto F, Matteini P, Rossi F, Pini R (2010) Size and shape control in the overgrowth of gold nanorods. J Nanoparticle Res 12:2029–2036

    Article  CAS  Google Scholar 

  29. Mazzoni M, Ratto F, Fortunato C, Pini R, Centi S (2014) Basic sets for aggregates of uncapped and capped gold nanorods representative alignments and couplings. IEEE conference publications on photonics technologies, 2014 Fotonica AEIT Italian Conference: 1–4 doi: 10.1109/Fotonica.2014.6843886

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Mazzoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzoni, M., Ratto, F., Fortunato, C. et al. Basic Sets for Plasmonic Diagnostics in Aggregates of Capped and Uncapped Gold Nanorods. Plasmonics 10, 9–15 (2015). https://doi.org/10.1007/s11468-014-9770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9770-8

Keywords

Navigation