Skip to main content
Log in

Nonlinear Optical Properties of Large-Sized Gold Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The nonlinear optical properties of single gold nanorods (GNRs) with a large diameter of ∼200 nm and a long length of ∼800 nm were investigated by using a focused femtosecond (fs) laser light with tunable wavelength. While the linear and nonlinear optical properties of small-sized GNRs have been extensively studied, the nonlinear optical properties of large-sized GNRs and the effects of high-order surface plasmon resonances remain unexplored. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed in the nonlinear response spectra, and their dependences on excitation wavelength and polarization were examined. The scattering and absorption spectra of the small- and large-sized GNRs were compared by using the discrete dipole approximation method. It was found that the extinction of large-sized GNRs is dominated by scattering rather than absorption, which is dominant in small-sized GNRs. In addition, it was revealed that the excitation wavelength-dependent SHG of a GNR is governed by the linear scattering of the GNR and the maximum SHG is achieved at the valley of the scattering spectrum. In comparison, the excitation wavelength dependence of TPL is determined by the absorption spectrum of the GNR. The polarization-dependent SHG of a GNR exhibits a strong dependence on the dimension of the GNR, and it may appear as bipolar distributions parallel or perpendicular to the long axis of the GNR or multipole distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Prasad PN (2004) Nanophotonics. John Wiley & Sons, New York

    Book  Google Scholar 

  3. Brongersma ML, Kik PG (2007) Surface plasmon nanophotonics. Springer, Netherlands

    Book  Google Scholar 

  4. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  5. Qian X, Peng X, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  6. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597

    Article  CAS  Google Scholar 

  7. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  8. Canfield BK, Husu H, Laukkanen J, Bai B, Kuittinen M, Turunen J, Kauranen M (2007) Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett 7:1251–1255

    Article  CAS  Google Scholar 

  9. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  10. Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9:3896–3903

    Article  CAS  Google Scholar 

  11. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  12. Chon JWM, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17:875–880

    Article  CAS  Google Scholar 

  13. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413

    Article  CAS  Google Scholar 

  14. Li X, Lan TH, Tien CH, Gu M (2012) Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat Commun 3:998

    Article  Google Scholar 

  15. Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:379–382

    Article  CAS  Google Scholar 

  16. Shao L, Fang C, Chen H, Man YC, Wang J, Lin HQ (2012) Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres. Nano Lett 12:1424–1430

    Article  CAS  Google Scholar 

  17. Chen L, Li GY, Liu GC, Dai QF, Lan S, Tie SL, Deng HD (2013) Sensing the moving direction, position, size, and material type of nanoparticles with the two-photon-induced luminescence of a single gold nanorod. J Phys Chem C 117:20146–201453

    Article  CAS  Google Scholar 

  18. Sönnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5:301–304

    Article  Google Scholar 

  19. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  CAS  Google Scholar 

  20. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  21. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  22. Khanal BP, Zubarev ER (2007) Rings of nanorods. Angew Chem Ed 46:2195–2198

    Article  CAS  Google Scholar 

  23. Van der Zande BMI, Koper GJM, Lekkerkerker HNW (1999) Alignment of rod-shaped gold particles by electric fields. J Phys Chem B 103:5754–5760

    Article  Google Scholar 

  24. Khatua S, Chang W, Swanglap P, Olson J, Link S (2011) Active modulation of nanorod plasmons. Nano Lett 11:3797–3802

    Article  CAS  Google Scholar 

  25. Pelton M, Liu M, Kim HY, Smith G, Guyot-Sionnest P, Scherer NF (2006) Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt Lett 31:2075–2077

    Article  CAS  Google Scholar 

  26. Zins I, Schubert O, Sönnichsen C, Oddershede LB (2008) Quantitative optical trapping of single gold nanorods. Nano Lett 8:2998–3003

    Article  Google Scholar 

  27. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  28. Eustis S, El-Sayed MA (2005) Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study. J Phys Chem B 109:16350–16356

    Article  CAS  Google Scholar 

  29. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102:15752–15756

    Article  CAS  Google Scholar 

  30. Hubert C, Billot L, Adam PM, Bachelot R, Royer P, Grand J, Gindre D, Dorkenoo KD, Ford A (2007) Role of surface plasmon in second harmonic generation from gold nanorods. Appl Phys Lett 90:181105–181107

    Article  Google Scholar 

  31. Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P (2010) Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10:1717–1721

    Article  CAS  Google Scholar 

  32. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (2000) Femtosecond transient absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time. Phys Rev B 61:6066–6090

    Article  Google Scholar 

  33. Deng HD, Li GC, Dai QF, Ouyang M, Lan S, Trofimov VA, Lysak TM (2013) Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles. Nanotechnology 24:075201

    Article  Google Scholar 

  34. Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110:2150–2154

    Article  CAS  Google Scholar 

  35. Okamoto H, Imura K (2009) Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Prog Surf Sci 84:199–229

    Article  CAS  Google Scholar 

  36. Yurkin MA, Maltsev VP, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf 106:558–589

    Article  CAS  Google Scholar 

  37. Draine BT, Flatau PJ (2009) User guide to the giscrete dipole approximation code, DDSCAT 7.0. http://arxiv.org/abs/0809.0337

  38. The information on the refractive indices of materials are available on website http://refractiveindex.info/

  39. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  40. Dadap JI, Shan J, Heinz TF (2004) Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J Opt Soc Am B 21:1328–1347

    Article  CAS  Google Scholar 

  41. Dadap JI, Shan J, Eisenthal KB, Heinz TF (1999) Second-harmonic rayleigh scattering from a sphere of centrosymmetric material. Phys Rev Lett 83:4045–4048

    Article  CAS  Google Scholar 

  42. Bachelier G, Butet J, Russier-Antoine I, Jonin C, Benichou E, Brevet PF (2010) Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions. Phys Rev B 82:235403

    Article  Google Scholar 

  43. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet P (2008) Multipolar second-harmonic generation in noble metal nanoparticles. J Opt Soc Am B 25:955–960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51171066 and 11374109), the Ministry of Education of China (Grant No. 20114407110002), and the project for high-level professionals in the universities of Guangdong province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Deng, H., Li, G. et al. Nonlinear Optical Properties of Large-Sized Gold Nanorods. Plasmonics 9, 1471–1480 (2014). https://doi.org/10.1007/s11468-014-9766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9766-4

Keywords

Navigation